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See supplements for reviews of
e basic real analysis
e basic multivariate calculus

e basic linear algebra



Last time: why convexity?

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis
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Reminder: a convex optimization problem is of
the form

min f(z)
subject to ¢;(z) <0,i=1,...m

where f and g;, ¢ = 1,...m are all convex, and
hj, j =1,...r are affine. Special property: any
local minimizer is a global minimizer




Outline

Today:
e Convex sets
e Examples

o Key properties

Operations preserving convexity

Same, for convex functions



Convex sets

Convex set: C' C R™ such that
z,yeC = te+(1—-t)yeC forall 0<t<1

In words, line segment joining any two elements lies entirely in set
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Convex combination of x1,...z; € R™: any linear combination
01z + ...+ 0y

with 6; > 0,7=1,...k, and Zle ; = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex



Examples of convex sets

Trivial ones: empty set, point, line

Norm ball: {z : ||x|| < r}, for given norm || - ||, radius r
Hyperplane: {x : a’x = b}, for given a,b

Halfspace: {z:a”x < b}

Affine space: {x : Az = b}, for given A, b



e Polyhedron: {z : Az < b}, where inequality < is interpreted
componentwise. Note: the set {x : Az < b,Cx = d} is also a
polyhedron (why?)
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e Simplex: special case of polyhedra, given by conv{xo,...x},
where these points are affinely independent. The canonical
example is the probability simplex,

conv{er,...ep} ={w:w>0, 1Tw =1}



Cones

Cone: C C R" such that
re(C — texeC forallt>0
Convex cone: cone that is also convex, i.e.,

11,9 € C = ti1x1 +1taxe € C forall t1,19 >0

Conic combination of x1,...x, € R™: any linear combination
9133'1 + ...+ 0k$k

with 6; > 0,9 =1,...k. Conic hull collects all conic combinations



Examples of convex cones

e Norm cone: {(z,t) : ||z|| < t}, for a norm || - ||. Under the ¢,
norm || - ||2, called second-order cone

e Normal cone: given any set C and point x € C, we can define

Ne(x)={g: g7z > gly, forallyeC}

. This is always a convex cone,
regardless of C

e Positive semidefinite cone: ST = {X € S" : X » 0}, where
X > 0 means that X is positive semidefinite (and S™ is the
set of n X n symmetric matrices)



Key properties of convex sets

e Separating hyperplane theorem: two disjoint convex sets have
a separating between hyperplane them

Formally: if C, D are nonempty convex sets with C'N D = (),
then there exists a, b such that

C’g{x:aTrvgb}
Dg{x:aT:UZb}



e Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

Formally: if C'is a nonempty convex set, and xy € bd(C),
then there exists a such that

C Clx:a’s <alxy}

Both of the above theorems (separating and supporting hyperplane
theorems) have partial converses; see Section 2.5 of BV
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Operations preserving convexity

e [ntersection: the intersection of convex sets is convex

e Scaling and translation: if C' is convex, then
aC+b={ax+b:zeC}

is convex for any a, b

e Affine images and preimages: if f(z) = Ax + b and C'is
convex then
F(C)={f(z) zeC}
is convex, and if D is convex then

fHD)={z: f(z) € D}

is convex
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Example: linear matrix inequality solution set

Given Ay, ... Ax, B € S", a linear matrix inequality is of the form
1AL+ 20As + ...+ 2 A =X B

for a variable z € R”. Let's prove the set C' of points x that satisfy
the above inequality is convex

Approach 1: directly verify that 2,y € C =tz + (1 — t)y € C.
This follows by checking that, for any v,
k
vl (B - Z(t:z:l +(1- t)yi)Ai)v >0
i=1

Approach 2: let f: RF — S", f(z) = B — Zle z;A;. Note that
C = f1(S%), affine preimage of convex set
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More operations preserving convexity

e Perspective images and preimages: the perspective function is
P:R"™ xR, — R"™ (where Ry denotes positive reals),

P(z,z)=x/z

for z > 0. If C C dom(P) is convex then so is P(C'), and if
D is convex then so is P~1(D)

e Linear-fractional images and preimages: the perspective map
composed with an affine function,

B Ax +b
Tr+d

/()

is called a linear-fractional function, defined on ¢’z +d > 0.
If C C dom(f) is convex then so if f(C), and if D is convex
then so is f~1(D)
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Example: conditional probability set

Let U,V be random variables over {1,...n} and {1,...m}. Let
C C R™™ be a set of joint distributions for U,V , i.e., each p € C
defines joint probabilities

p”:P(U:Z,V:])

Let D C R™™ contain corresponding conditional distributions, i.e.,
each ¢ € D defines

Assume C' is convex. Let's prove that D is convex. Write

D:{qeR"m:qz‘j:%, for some peC} = f(O)

where f is a linear-fractional function, hence D is convex
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Convex functions
Convex function: f : R™ — R such that dom(f) C R™ convex, and
flz+ (1 =t)y) <tf(z)+ (A -1)f(y) for 0<t<1

and all z,y € dom(f)

In words, function lies below the line segment joining f(x), f(y)
Concave function: opposite inequality above, so that

f concave <= —f convex
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Important modifiers:

e Strictly convex: f(tz + (1 —t)y) <tf(z) + (1 —1t)f(y) for
x#yand 0 <t<1. Inwords, f is convex and has greater
curvature than a linear function

e Strongly convex with parameter m > 0: f — %[ z||3 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex = strictly convex = convex

(Analogously for concave functions)
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Examples of convex functions

Univariate functions:

v

Exponential function: e** is convex for any a over R
Power function: z® is convex for a > 1 or a < 0 over R
(nonnegative reals)

Power function: 2 is concave for 0 < a <1 over Ry
Logarithmic function: log z is concave over R, |

v

v

v

Affine function: a®z + b is both convex and concave

Quaderatic function: %xTQm + Tz + ¢ is convex provided that
Q@ = 0 (positive semidefinite)

Least squares loss: ||y — Az||3 is always convex (since AT A is
always positive semidefinite)
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e Norm: |[z|| is convex for any norm; e.g., £, norms,

n 1/p
el = (Zx) for p>1, alloe = max ||
1=
and also operator (spectral) and trace (nuclear) norms,
T
[Xllop = o1(X), X [ler = >_on(X)
i=1

where 01(X) > ... > 0,(X) > 0 are the singular values of
the matrix X
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e |ndicator function: if C is convex, then its indicator function

0 zeC

fe(w) = oo z¢C

is convex

e Support function: for any set C' (convex or not), its support

function
I (x) = max 2t
o(z) e Y

is convex

e Max function: f(z) = max{z1,...x,} is convex
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Key properties of convex functions

e A function is convex if and only if its restriction to any line is
convex

e Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(z,t) € dom(f) x R: f(x) <t}
is a convex set
e Convex sublevel sets: if f is convex, then its sublevel sets
{z € dom(f) : () < t}

are convex, for all t € R. The converse is not true
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e First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex, and

fy) 2 fz) + V()" (y - 2)

for all 2,y € dom(f). Therefore for a differentiable convex
function Vf(z) =0 <= x minimizes f

e Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex, and V2f(z) = 0
for all x € dom(f)

e Jensen's inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X]) < E[f(X)]
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Operations preserving convexity

e Nonnegative linear combination: fi,... f;, convex implies
a1fi1+ ...+ amfm convex for any ay,...a;, >0

e Pointwise maximization: if fs is convex for any s € S, then
f(x) = maxseg fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite

e Partial minimization: if g(x,y) is convex in x,y, and C'is
convex, then f(z) = minyec g(x,y) is convex
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Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C' under an arbitrary norm || - ||:

= a. —_
Fla) = mas 1~ ]

Let's check convexity: f,(x) = ||z — y|| is convex in z for any fixed
Yy, so by pointwise maximization rule, f is convex

Now let C' be convex, and consider the minimum distance to C:
) =min ||z —
(o) = min [lo =yl

Let's check convexity: g(z,y) = || — y|| is convex in z,y jointly,
and C' is assumed convex, so apply partial minimization rule
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More operations preserving convexity

e Affine composition: if f is convex, then g(x) = f(Az +b) is
convex

e General composition: suppose f = h o g, where g : R” — R,
h:R—=R, f:R"— R. Then:

>

>

>

>

f is convex if h is convex and nondecreasing, g is convex
f is convex if h is convex and nonincreasing, g is concave
f is concave if h is concave and nondecreasing, g concave
f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

(@) = h"(g(@))g'(@)* + W (g(x))g" (x)
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e Vector composition: suppose that

f(@) =h(g(z)) = h(g1 (), .. gk(x))

where g : R* - R¥ h:R¥ 5 R, f:R® - R. Then:

» f is convex if h is convex and nondecreasing in each
argument, g is convex

» fis convex if h is convex and nonincreasing in each
argument, g is concave

» f is concave if h is concave and nondecreasing in each
argument, g is concave

» f is concave if h is concave and nonincreasing in each
argument, g is convex
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Example: log-sum-exp function

Log-sum-exp function: g(x) = log(Z- €% Tbi) for fixed a;, b;,
i =1,...k. Often called “soft max", as it smoothly approximates

maxi:Lmk (a?$ + bl)

How to show convexity? First, note it suffices to prove convexity of
f(x) =log(> 1, ) (affine composition rule)

Now use second-order characterization. Calculate

eri

Ze 1690’Z
e 6

s =) -

Write V2f(z) = diag(z) — 227, where z; = €% /(3_}_, €%). This
matrix is diagonally dominant, hence positive semidefinite

Vif(x) =

Viif(a) =
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