
Homework 5

Convex Optimization 10-725

Due Friday, November 30 at 11:59pm

Submit your work as a single PDF on Gradescope. Make sure to prepare your
solution to each problem on a separate page. (Gradescope will ask you select the

pages which contain the solution to each problem.)

Total: 65 points

1 Exponential families and convexity (24 points)

In this problem, we’ll study convexity (and concavity) in exponential families and generalized linear
models. Consider an exponential family density (or probability mass) function over y ∈ D ⊆ Rn, of
the form

f(y; θ) = exp
(
yT θ − b(θ)

)
f0(y). (1)

Note θ ∈ Rn is called the natural parameter in this family.

1. (6 pts) Prove that b : C → R is a convex function, where C = dom(b). Hint: use the fact that
f(y; θ) is a density (or probability mass) function to derive an expression for b(θ).

2. (2 pts) Assume that θi = xTi β for each i = 1, . . . n, where xi ∈ Rp are predictor measurements
(considered fixed, i.e., nonrandom) and β ∈ Rp is a coefficient vector. Prove that the domain
of β, B = {β : (xT1 β, . . . x

T
nβ) ∈ C}, is a convex set.

3. (3 pts) Write down the log likelihood function `(β;Y ) for a random vector Y ∈ Rn drawn
from the distribution in (1). Prove that maximizing this log likelihood over β ∈ B is a concave
maximization problem, i.e., a convex optimization problem.

Note: taking θi = xTi β, i = 1, . . . n as we’ve done is the same as considering a generalized
linear model with canonical link function. What you’ve just shown: maximum likelihood in
any generalized linear model (with canonical link) is a convex optimization problem.

4. (4 pts) Argue that when b(θ) = ‖θ‖22/2, the maximum log likelihood problem is the same
as linear regression, and that when b(θ) =

∑n
i=1 log(1 + exp(θi)), it is the same as logistic

regression.

5. (9 pts) Argue whether or not each of the following regularized maximum likelihood problems
is a convex optimization problem, as written. Your justifications can be one line (or less).
Below, λ, t, k ≥ 0 are all constants.

(a) maxβ∈B `(β)− λ‖β‖1
(b) maxβ∈B `(β) subject to β1 ≥ 0, . . . βp ≥ 0

(c) maxβ∈B `(β) subject to βTQβ = t, for a matrix Q � 0
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(d) maxβ∈B `(β) subject to ‖β‖2 ≤ t
(e) maxβ∈B `(β)− λ log

∑
i6=j exp(βi − βj)

(f) maxβ∈B `(β) subject to maxi=1,...p−1 |βi − βi+1| ≤ t
(g) maxβ∈B `(β) subject to maxα:‖α‖0≤k ‖β − α‖2 ≤ t
(h) maxβ∈B `(β) subject to minα:‖α‖0≤k ‖β − α‖2 ≤ t
(i) maxβ∈B `(β) subject to β1A1 + . . .+ βpAp � 0, for symmetric matrices A1, . . . Ap

2 Subgradients, conjugates, and duality (24 points)

Let f be a closed and convex function, and let f∗ its conjugate. Recall that for a linear map A, the
problem

min
x

f(x) + g(Ax) (2)

has a dual problem
max
y
−f∗(−AT y)− g∗(y). (3)

Suppose that g is convex and has a known proximal operator

proxg,t(x) = argmin
z

1

2t
‖x− z‖22 + g(z).

Note that this does not necessarily mean that we know the proximal operator for h(x) = g(Ax).
Therefore we cannot easily apply proximal gradient descent to the primal problem (2). However, as
you will show in the next few parts, knowing the proximal mapping of g does lead to the proximal
mapping of g∗, which leads to an algorithm on the dual problem (3).

1. (5 pts) Show that
y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y).

Hint: show that y ∈ ∂f(x)⇒ x ∈ ∂f∗(y) by using the rule for subgradients of a maximum of
functions. Then apply what you know about f∗∗ for closed, convex f to show the converse.

2. (4 pts) Assume henceforth that f is strictly convex. Show that this implies f∗ is differentiable,
and that

∇f∗(y) = argmin
x

f(x)− yTx.

Hint: use part 1.

3. (5 pts) Prove that
proxg,1(x) + proxg∗,1(x) = x,

for all x. This is called Moreau’s theorem. Note the specification t = 1 in the above. Hint:
again use part 1.

4. (5 pts) Verify that for t > 0, we have (tg)∗(x) = tg∗(x/t). Use this, and part 3, to prove that
for any t > 0,

proxg,t(x) + t · proxg∗,1/t(x/t) = x,

for all x. Hint: apply part 3 to the function tg. Then note proxg,t(x) = proxtg,1(x), and the
same for g∗.

5. (5 pts) Lastly, write down a proximal gradient descent algorithm for the dual problem (3).
Use parts 2 and 4 of this question to express all quantities in terms of f and g. That is, your
proximal gradient descent updates should not have any appearances of ∇f∗ or proxg∗,t(·).
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3 Coordinate descent and Dykstra (17 points)

Given y ∈ Rn, X ∈ Rn×p, consider the regularized least squares program

min
w∈Rp

1

2
‖y −Xw‖22 +

d∑
i=1

hi(wi), (4)

where w = (w1, . . . , wd) is a block decomposition with wi ∈ Rpi , i = 1, . . . , d, and where hi, i =
1, . . . , d are convex functions. Let Xi ∈ Rn×pi , i = 1, . . . , d be a corresponding block decomposition
of the columns of X, and g(w) = ‖y −Xw‖22/2.

1. (4 pts) Consider coordinate descent, which repeats the following updates:

w
(k)
i = argmin

wi∈Rpi

1

2

∥∥∥∥y −∑
j<i

Xjw
(k)
j −

∑
j>i

Xjw
(k−1)
j −Xiwi

∥∥∥∥2
2

+ hi(wi), i = 1, . . . , d, (5)

for k = 1, 2, 3, . . .. Consider also coordinate proximal gradient descent, which repeats:

w
(k)
i = proxhi,tki

(
w

(k−1)
i − tki∇ig(w

(k)
1 , . . . , w

(k)
i−1, w

(k−1)
i , . . . , w

(k−1)
d )

)
, i = 1, . . . , d, (6)

for k = 1, 2, 3, . . .. Assume we initialize these algorithms at the same point. Show that when
each pi = 1 (all coordinate blocks are of size 1), under appropriate step sizes for coordinate
proximal gradient descent, these two methods are exactly the same. (Assume each Xi 6= 0.)

2. (2 pts) When at least one pi > 1, give an example to show that these two methods are not the
same, for any choice of step sizes in coordinate proximal gradient descent.

3. (3 pts) Assume henceforth that hi, i = 1, . . . , d are each support functions

hi(v) = max
u∈Di

〈u, v〉, i = 1, . . . , d.

where Di ⊆ Rpi , i = 1, . . . , d are closed, convex sets. Show that the dual of (4) is what is
sometimes called the best approximation problem

min
u∈Rn

‖y − u‖22 subject to u ∈ C1 ∩ · · · ∩ Cd. (7)

where each Ci = (XT
i )−1(Di) ⊆ Rn, the inverse image of Di under the linear map XT

i . Show
also that the relationship between the primal and dual solutions w, u is

u = y −Xw (8)

4. (2 pts) Assume that each Xi has full column rank. Show that, for each i and any a ∈ Rn,

w∗i = argmin
wi∈Rpi

1

2
‖a−Xiwi‖22 + hi(wi) ⇐⇒ Xiw

∗
i = a− PCi(a).

Hint: write Xiw
∗
i in terms of a proximal operator then use Moreau’s theorem in Q2 part 3.

5. (6 pts) Dykstra’s algorithm for problem (7) can be described as follows. We initialize u
(0)
d = y,

z
(0)
1 = · · · = z

(0)
d = 0, and then repeat:

u
(k)
0 = u

(k−1)
d ,

u
(k)
i = PCi

(u
(k)
i−1 + z

(k−1)
i ),

z
(k)
i = u

(k)
i−1 + z

(k−1)
i − u(k)i ,

}
for i = 1, . . . , d,

(9)
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for k = 1, 2, 3, . . .. As k →∞, the iterate u
(k)
0 in (9) will approach the solution in (7).

Assuming that we initialize w(0) = 0, show that coordinate descent (5) for problem (4) and
Dykstra’s algorithm (9) for problem (7) are in fact completely equivalent, and satisfy

z
(k)
i = Xiw

(k)
i and u

(k)
i = y −

∑
j≤i

Xjw
(k)
j −

∑
j>i

Xjw
(k−1)
j , for i = 1, . . . , d,

at all iterations k = 1, 2, 3, . . .. Hint: use an inductive argument, and the result in part 4.

6. (Bonus, 3 pts) Let γ1, . . . , γd > 0 be arbitrary weights with
∑d
i=1 γi = 1. Consider the problem

min
u=(u1,...,ud)∈Rnd

d∑
i=1

γi‖y − ui‖22 subject to u ∈ C0 ∩ (C1 × · · · × Cd), (10)

where C0 = {(u1, . . . , ud) ∈ Rnd : u1 = · · · = ud}. Observe that this is equivalent to (7), and
is sometimes called the product-space reformulation of (7), or the consensus form of (7).

Rescale (10) to turn the loss into an unweighted squared loss, then apply Dykstra’s algorithm
to the resulting best approximation problem. Show that the resulting algorithm repeats:

u
(k)
0 =

d∑
i=1

γiu
(k−1)
i ,

u
(k)
i = PCi

(u
(k)
0 + z

(k−1)
i ),

z
(k)
i = u

(k)
0 + z

(k−1)
i − u(k)i ,

}
for i = 1, . . . , d,

(11)

for k = 1, 2, 3, . . .. Importantly, the steps enclosed in curly brace above can all be performed
in parallel, so that (11) is a parallel version of Dykstra’s algorithm (9) for problem (7).

7. (Bonus, 4 pts) Prove that the iterations (11) can be rewritten in equivalent form as

w
(k)
i = argmin

wi∈Rpi

1

2

∥∥∥y −Xw(k−1) +Xiw
(k−1)
i /γi −Xiwi/γi

∥∥∥2
2

+ hi(wi/γi), i = 1, . . . , d, (12)

for k = 1, 2, 3, . . .. Importantly, the updates above can all be performed in parallel, so that
(12) is a parallel version of coordinate descent (5) for problem (4). Hint: use an inductive
argument and the result in part 4, similar to your proof in part 5.

4


	Exponential families and convexity (24 points)
	Subgradients, conjugates, and duality (24 points)
	Coordinate descent and Dykstra (17 points)

