
Homework 1

Convex Optimization 10-725

Due Friday September 14 at 11:59pm

Submit your work as a single PDF on Gradescope. Make sure to prepare your
solution to each problem on a separate page. (Gradescope will ask you select the

pages which contain the solution to each problem.)

Total: 75 points
v1.2

1 Convex sets (18 points)

(a, 8 pts) Closed and convex sets.

i. Show that If S ⊆ Rn is convex, and A ∈ Rm×n, then A(S) = {Ax : x ∈ S}, called the image of
S under A, is convex.

ii. Show that if S ⊆ Rm is convex, and A ∈ Rm×n, then A−1(S) = {x : Ax ∈ S}, called the
preimage of S under A, is convex.

iii. Show that (ii) also holds if we replace “convex” by “closed”.

iv. Show that (i) does not hold if we replace “convex” by “closed”, i.e., give a counterexample.

(b, 4 pts) Polyhedra.

i. Show that any polyhedron is both closed and convex.

ii. Show that if P ⊆ Rn is a polyhedron, and A ∈ Rm×n, then A(P ) is a polyhedron. Hint: you
may use the fact that

P ⊆ Rm+n is a polyhedron ⇒ {x ∈ Rn : (x, y) ∈ P for some y ∈ Rm} is a polyhedron.

Bonus. Show that if P ⊆ Rm is a polyhedron, and A ∈ Rm×n, then A−1(P ) is a polyhedron.

(c, 2 pts) Given some integer k ≥ 0, the Fantope of order k is

{Z ∈ Sn : 0 � Z � I, tr(Z) = k}.

You can think of this like a “polyhedron in matrix land”. Prove that it is convex, in one of two
ways: (i) straight from the definition of convexity; or (ii) by recognizing that it is the convex hull of
another set.

(d, 4 pts) The following is a “strict” variant of the Separating Hyperplane Theorem: if C,D ⊆ Rn
are disjoint, closed and convex, and (say) D is bounded, then there exists a ∈ Rn, b ∈ R with a 6= 0
such that aTx > b for all x ∈ C and aTx < b for all x ∈ D (i.e., the hyperplane {x ∈ Rn : aTx = b}
strictly separates C,D). Use this to prove Farkas’ Lemma: given A ∈ Rm×n, b ∈ Rm, exactly one
of the following is true:
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• there exists x ∈ Rn such that Ax = b, x ≥ 0;

• there exists y ∈ Rm such that AT y ≥ 0, yT b < 0.

Hint: it will help you to use part (b.ii), to deduce that the set {Ax : x ≥ 0} is a polyhedron, and
hence closed and convex by part (b.i).

2 Convex functions (14 points)

(a, 2 pts) Prove that the function f : Rn → R, defined by

f(x) = min
σ

n−1∑
i=1

|xσ(i) − xσ(i+1)|,

where the minimum above is over all permutations σ of the set {1, . . . , n}, is convex. Hint: you can
rewrite this function in a much simpler form.

(b, 2 pts) Prove that the log barrier function f : Rn++ → R, defined as

f(x) = −
n∑
i=1

log(xi),

is strictly convex.

(c, 4 pts) Let f be twice differentiable, with dom(f) convex. Prove that f is convex if and only if

(∇f(x)−∇f(y))T (x− y) ≥ 0,

for all x, y. This property is called monotonicity of the gradient ∇f .

(d, 2 pts) Give an example of a strictly convex function that does not attain its infimum.

(e, 2 pts) A function f : Rn → R is said to be coercive provided that f(x)→∞ as ‖x‖2 →∞. A key
fact about coercive functions is that they attain their infimums. Prove that a twice differentiable,
strongly convex function is coercive and hence attains its infimum. Hint: use Q3 part (b.iv).

(f, 2 pts) Let f : Rn → R be a function. Its perspective transform g : Rn+1 → R is defined by

g(x, t) = tf(x/t),

with domain dom(g) = {(x, t) ∈ Rn+1 : x ∈ dom(f), t > 0}. Prove that if f is convex, then so is its
perspective transform g, in one of two ways: (i) straight from the definition of convexity; or (ii) by
following the proof in Section 3.2.6 in Boyd and Vandenberghe, explaining each step appropriately.

3 Lipschitz gradients and strong convexity (16 points)

Let f be convex and twice continuously differentiable.

(a, 8 pts) Show that the following statements are equivalent.

i. ∇f is Lipschitz with constant L;
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ii. (∇f(x)−∇f(y))T (x− y) ≤ L‖x− y‖22 for all x, y;

iii. ∇2f(x) � LI for all x;

iv. f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ‖y − x‖

2
2 for all x, y.

(b, 8 pts) Show that the following statements are equivalent.

i. f is strongly convex with constant m;

ii. (∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖22 for all x, y;

iii. ∇2f(x) � mI for all x;

iv. f(y) ≥ f(x) +∇f(x)T (y − x) + m
2 ‖y − x‖

2
2 for all x, y.

4 Solving optimization problems with CVX (27 points)

CVX is a fantastic framework for disciplined convex programming—it’s rarely the fastest tool for
the job, but it’s widely applicable, and so it’s a great tool to be comfortable with. In this exercise
we will set up the CVX environment and solve a convex optimization problem.

Generally speaking, for homeworks in this class, your solution to programming-based problems
should include plots and whatever explanation necessary to answer the questions asked. In addition,
you full code should be submitted as an appendix to the homework document.

CVX variants are available for each of the major numerical programming languages. There are
some minor syntactic and functional differences between the variants but all provide essentially the
same functionality.

Download the CVX variant of your choosing:

• Matlab - http://cvxr.com/cvx/

• Python - http://www.cvxpy.org/

• R - https://cvxr.rbind.io

• Julia - https://github.com/JuliaOpt/Convex.jl

and consult the documentation to understand the basic functionality. Make sure that you can solve
the least squares problem minθ ‖y − Xθ‖22 for a vector y and matrix X. Check your answer by
comparing with the closed-form solution (XTX)−1XT y.

(a) Using CVX, we will solve the 2d lasso problem and its variants:

min
θ∈Rmn

1

2

mn∑
i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj | .

The set E is the set of all undirected edges connecting horizontally or vertically neighboring pixels
in the image. More specifically, (i, j) ∈ E if and only if pixel i is the immediate neighbor of pixel j
on the left, right, above or below.

1. (5 pts) Load the basic test data from toy.csv and solve the 2d lasso problems with λ = 1.
Report the objective value obtained at the solution and plot the solution and original data as
images. Why does the shape change its form?
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2. (5 pts) Another way to formulate the 2d lasso problem is as follows:

min
θ∈Rm×n

1

2

m∑
a=1

n∑
b=1

(ya,b − θa,b)2 + λ

m∑
a=1

n∑
b=1

∥∥∥∥(θa,b − θa+1,b

θa,b − θa,b+1

)∥∥∥∥
p

.

Note that the index a, b here refers to the coordinates of pixel i. When taking a 1-norm (p = 1),
the formulation reduces to the 2d fused lasso mentioned above, and the latter term is called
an “anisotropic” total variation penalty. When taking a 2-norm (p = 2), the term is called an
“isotropic” total variation penalty.

Solve the “isotropic” 2d lasso problems with λ = 1 on toy.csv. Report the objective value
obtained at the solution and plot the solution and original data as images. Informally speaking,
why is the output different from the “anisotropic” penalty, and what’s the difference?

Hint: For cvxpy users, the diff function, the hstack function, and the axis option in the norm
function would be useful. For Matlab CVX users, there is a norms(x,p,dim) function that can
compute the norm along different dimensions.

3. (7 pts) Next, we consider how the solution changes as we vary λ. Load a grayscale 64×64 pixel
image from baboon.csv and solve the isotropic and anisotropic 2d lasso problem for this image
for λ ∈ {10−k/4 : k = 0, 1, . . . , 8}. For each λ, report the value of the optimal objective value,
plot the optimal image and show a histogram of the pixel values (100 bins between values 0
and 1). What change in the histograms can you observe with varying λ for the isotropic and
anisotropic penalties?

(b, 10 pts) Disciplined convex programming (DCP) is a system for composing functions while ensur-
ing their convexity. It is the language that underlies CVX. Essentially, each node in the parse tree
for a convex expression is tagged with attributes for curvature (convex, concave, affine, constant)
and sign (positive, negative) allowing for reasoning about the convexity of entire expressions. The
website http://dcp.stanford.edu/ provides visualization and analysis of simple expressions.

Typically, writing problems in the DCP form is natural, but in some cases manipulation is
required to construct expressions that satisfy the rules. For each set of mathematical expressions
below, first briefly explain why each defines a convex set. Then, give an equivalent DCP expression
along with a brief explanation of why the DCP expression is equivalent to the original for each set.
DCP expressions should be given in a form that passes analysis (a green tick on the left of the
expression box) at http://dcp.stanford.edu/analyzer.

Note: this question is really about developing a better understanding of the various composition
rules for convex functions.

1. 1
x−y + 1

(x+y)2 ≤ z, x > |y|

2. x2 + 2
log2 y

≤ 5z
1
4 , y > 1, z ≥ 0

3. 2x2 − 2xy + 5y2 = 0

4. (x2 + 4y2 + 1)3/2 ≤ 7x+ y

5. 2xyz ≥ yz + 8, x ≥ 1
2 , y ≥ 0, z ≥ 0

6. x exp
(
y
x

)
≤ z, x > 0, z > 0

7. z2 ≤ 4xy, x+ y ≥ 0

8. (x+y)4√
z
≤ 2x+ y, z > 0
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9. max2(x, 2) + |y|2 − z2 ≤ 0, z ≥ 0.

10. log
(
e−
√
x +

(
1 + y

z

)y) ≤ − exp(−z), x ≥ 0, y > 0, z > 0

Bonus. Is the function f(x) = log
(
α+

∑n
i=1

βi

xi

)
+λ‖x‖2, where α ≥ 0, β > 0, λ > 0, convex on

Rn++? Is it possible to express this into an equivalent DCP expression? Now, consider the following
optimization problem:

minimize log
(
α+

∑n
i=1

βi

xi

)
+ λ‖x‖2

subject to
∑n
i=1 xi ≤ 1

where x ∈ Rn++ is the optimization variable, and α ≥ 0, β > 0, and λ > 0 are fixed problem
parameters. Can you use CVX to solve the above problem for given α, β, and λ?
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