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13.1 Last Class

13.1.1 KKT conditions

For the problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, ...,m

lj(x) = 0, j = 1, ..., r

the KKT conditions are

• Stationary: 0 ∈ ∂f(x) +
∑m
i=1 ui∂hi(x) +

∑r
j=1 vj∂lj(x),

• Complementary slackness: ui · hi(x) = 0, ∀i,

• Primal feasibility: hi(x) ≤ 0, hj(x) = 0, ∀i, j,

• Dual feasibility: ui ≥ 0, ∀i.

The KKT conditions are always sufficient, and are necessary for optimality under strong duality.

13.1.2 Uses of duality

For a primal feasible x and a dual feasible u, v, f(x) − g(u, v) is called the duality gap between x and u, v.
Since f(x) ≥ g(u, v) we have

f(x)− f(x∗) ≤ f(x)− g(u, v).

So a zero duality gap implies optimality. Also the duality gap can be used as a stopping criterion in
algorithms.

Under strong duality, if we are given dual optimal u∗, v∗, any primal solution minimizes L(x, u∗, v∗) over
all x, because of the stationary condition. This can be used to characterize or compute primal solutions.
Explicitly, given a dual solution u∗, v∗, any primal solution x∗ solves

min
x
f(x) +

m∑
i=1

u∗i ∂hi(x) +

r∑
j=1

v∗j ∂lj(x).
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Solutions of this unconstrained problem can often be expressed explicitly, giving an explicit characterization
of primal solutions from dual solutions.
Example (B & V page 249). Consider the problem

min
x

n∑
i=1

fi(xi)

subject to aTx = b

where each fi : R→ R is smooth and strictly convex. The dual function is

g(v) = min
x

n∑
i=1

fi(xi) + v(b− aTx)

= bv +

n∑
i=1

min
xi

fi(xi)− aivxi

= bv −
n∑
i=1

f∗i (aiv),

where f∗i is the conjugate of fi, which we will define later. The dual problem is thus

max
v

bv −
n∑
i=1

f∗i (aiv)

or

min
v

n∑
i=1

f∗i (aiv)− bv.

This is a convex minimization problam with a scalar variable - it is much easier to solve than the primal
problem. Given v∗, the primal solution x∗ solves

n∑
i=1

min
xi

fi(xi) + aivxi.

Since each fi is strictly convex, the problem minxi
fi(xi)+aivxi has a unique solution, which can be computed

by solving ∇fi(xi) = aiv
∗ for each i.

13.2 Dual norms

Let ‖x‖ be an arbitrary norm. For example:

• lp norm: ‖x‖p = (
∑n
i=1 |xi|p)

1/p
, for p ≥ 1.

• Trace norm: ‖X‖tr =
∑r
i=1 σi(X).

Define its dual norm ‖x‖∗ as
‖x‖∗ = max

‖z‖≤1
zTx.

The definition gives us the inequality |zTx| ≤ ‖z‖‖x‖∗, similar to Cauchy-Schwartz inequality. For the
examples:
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• lp norm dual: (‖x‖p)∗ = ‖x‖q, where 1/p+ 1/q = 1.

• Trace norm: (‖X‖tr)∗ = ‖X‖op = σ1(X).

We can show that

Theorem 13.1 The dual of dual norm is the original norm: i.e.,

‖x‖∗∗ = ‖x‖.

Proof: Consider the problem

min
y
‖y‖ subject to y = x,

whose optimal value is ‖x‖. Its Lagrangian is

L(y, u) = ‖y‖+ uT (x− y) = ‖y‖ − yTu+ xTu.

From the definition of ‖ · ‖∗, if ‖u‖∗ > 1, let z be the maximizer of max‖z‖≤1 z
Tx, i.e., zTx = ‖u‖∗. Note

that ‖z‖ = 1. Let y = tz for t > 0. Thus

‖y‖ − yTu = t(‖z‖ − zTu) = t(1− ‖u‖∗)

which → −∞ as t→∞. So in such case miny ‖y‖ − yTu = −∞.

If ‖u‖∗ ≤ 1, we have ‖y‖ − yTu ≥ ‖y‖ − ‖y‖‖u‖∗ ≥ 0. This can be realized by setting y = 0. So
miny ‖y‖ − yTu = 0.

Therefore the Lagrange dual problem is

max
u

uTx subject to ‖u‖∗ ≤ 1,

whose optimal value is the dual of ‖ · ‖∗, i.e., ‖x‖∗∗. By strong duality we have

‖x‖∗∗ = ‖x‖.

13.3 Conjugate function

13.3.1 Definition

Given a function f : Rn → R, define its conjugate f∗ : Rn → R,

f∗(y) = max
x

yTx− f(x)

Since yTx− f(x) is convex in y for any fixed x, f∗ is always convex as it is a pointwise maximum of convex
(affine) functions in y (f need not be convex). f∗(y) is the maximum gap between linear function yTx and
f(x) and Figure 13.1 shows how it looks like when f is a scalar function. For differentiable f , conjugation
is called the Legendre transform.
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Given y, the upper dashed line represents the func-
tion g(x) = yx and solid line represents f(x). f∗(y)
is the biggest gap between g and f where g is above
f . The lower dashed line is drawn to find such
biggest gap and the absolute value of intercept cor-
responds to the value of biggest gap

Figure 13.1: From [1] pp. 91

13.3.2 Properties

• Fenchel’s inequality: for any x, y,

f(x) + f∗(y) ≥ xT y

Proof: f∗(y) = maxz z
T y − f(z) ≥ xT y − f(x)

• Hence conjugate of conjugate f∗∗ satisfies f∗∗ ≤ f .
Proof: f∗∗(x) = maxz z

Tx− f∗(z) ≤ maxz f(x) = f(x) (’≤’ comes from Fenchel’s inequality)

• If f is closed and convex, then f∗∗ = f
Proof: f(x) shares the same value with miny f(y), subject to y = x. The dual is maxu u

Tx− f∗(u) =
f∗∗(x). Since strong duality holds, the equality follows.

• If f is closed and convex, then for any x, y,

x ∈ ∂f∗(y)⇐⇒ y ∈ ∂f(x)

⇐⇒ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v), then

f∗(w, z) = f∗1 (w) + f∗2 (z)

Proof: f∗(w, z) = maxu,v(u
T , vT )(w, z)T −f(u, v) = maxu,v u

Tw+vT z−f1(u)−f2(v) = maxu{uTw−
f1(u)}+ maxv{vT z − f2(v)} = f∗1 (w) + f∗2 (z)

13.3.3 Examples

• Simple quadratic: let f(x) = 1
2x

TQx, where Q � 0. Then yTx− 1
2x

TQx is strictly concave in y and is
maximized at y = Q−1x, so

f∗(y) =
1

2
yTQ−1y
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• Indicator function: if f(x) = IC(x), then its conjugate is

f∗(y) = max
x∈C

yTx := I∗C(y)

called the support function of C.

• Norm: if f(x) = ‖x‖, then its conjugate is

f∗(y) = I{z:‖z‖∗≤1}(y)

where ‖ · ‖∗ is the dual norm of ‖ · ‖.

13.3.4 Example: lasso dual

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Its dual function is just a constant (equal to f?). Therefore we transform the primal to

min
β,z

1

2
‖y − z‖22 + λ‖β‖1

subject to z = Xβ

So dual function is now

g(u) = min
β,z

1

2
‖y − z‖22 + λ‖β‖1 + uT (z −Xβ)

= −1

2
‖u‖22 + yTu− I{v:‖v‖∞≤1}(X

Tu/λ)

Therefore the lasso dual problem is

max
u
− 1

2
‖u‖22 + yTu

subject to ‖XTu‖∞ ≤ λ

or equivalently

min
u
‖y − u‖22

subject to ‖XTu‖∞ ≤ λ

Check: Slater’s condition holds, and hence so does strong duality. But note: the optimal value of the last
problem is not the optimal lasso objective value.

Further, note the given the dual solution u, any lasso solution β satisfies

Xβ = y − u

This is from KKT stationarity condition for z (i.e. z − y + β = 0). So the lasso fit is just the dual residual
(see Figure 13.2).
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Figure 13.2: The lasso solution and its dual solution

13.3.5 Conjugates and dual problems

Conjugates appear frequently in derivation of dual problems, via

−f∗(u) = min
x
f(x)− uTx

in minimization of the Lagrangian. E.g., consider

min
x
f(x) + g(x)

Equivalently: minx,z f(x) + g(z) subject to x = z. Lagrange dual function is:

g(u) = min
x,z

f(x) + g(z) + uT (z − x)

= min
x,z

f(x)− uTx+ g(z)− (−u)T z

= min
x
{f(x)− uTx}+ min

z
{g(z)− (−u)T z}

= −max{uTx− f(x)} −max
z
{(−u)T z − g(z)}

= −f∗(u)− g∗(−u)

Examples of this last calculation:

• Indicator function: the dual of

min
x
f(x) + IC(x)

is

max
u
−f∗(u)− I∗C(−u)

where I∗C is the support function of C.

• Norms: the dual of

min
x
f(x) + ‖x‖
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is

max
u
−f∗(u)− I{z:‖z‖∗≤1}(−u)

or equivalently

max
u
−f∗(u) subject to ‖u‖∗ ≤ 1

where ‖ · ‖∗ is the dual norm of ‖ · ‖.

13.3.6 Shifting linear transformations

Dual formulations can help us by ”shifting” a linear transformation between one part of the objective and
another. Let’s consider

min
x
f(x) + g(Ax)

Equivalently: minx,z f(x) + g(z) subject to Ax = z. Like before:

g(u) = min
x,z

f(x) + g(z) + uT (z −Ax)

= −max
x

(ATu)Tx− f(x)−max
z

(−u)T z − g(z)

= −f∗(ATu)− g∗(−u)

Then dual is:

max
u
−f∗(ATu)− g∗(−u)

Example: for a norm and its dual norm, ‖ · ‖, ‖ · ‖∗, the problems

min
x
f(x) + ‖Ax‖

and

max
u
−f∗(ATu) subject to ‖u‖∗ ≤ 1

are primal and dual paris.

13.4 Dual cones

13.4.1 Definition

Recall that set K ⊆ Rn is a cone if ∀x ∈ K, t ≥ 0, we have tx ∈ K.

The dual cone of K is defined as

K∗ = {y : yTx ≥ 0 for all x ∈ K}

Important properties:

• K∗ is closed and convex.

• K1 ⊆ K2 ⇒ K∗2 ⊆ K∗1
• K∗∗ is the closure of the convex hull of K. (Hence if K is convex and closed, K∗∗ = K)
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Left. The halfspace with inward normal y contains the cone K,
so y ∈ K∗. Right. The halfspace with inward normal z does
not contain K, so z /∈ K.

Figure 13.3: From B & V [1] pp. 52

13.4.2 Examples

• Linear subspace: the dual cone of a linear subspace V is V ⊥, its orthogonal complement. E.g.
(row(A))∗ = (A).

• Norm cone: the dual cone of the norm cone

K = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t}

is the norm cone of its dual norm

K∗ = {(y, s) ∈ Rn+1 : ‖y‖∗ ≤ s}

• Positive semidefinite cone: the convex cone Sn+ is self-dual, i.e. (Sn+)∗ = Sn+.

Y � 0 ⇐⇒ Tr(Y X) ≥ 0 for all X � 0

13.4.3 Dual cones and dual problems

Consider the cone constrained problem

min
x
f(x) subject to Ax ∈ K

its dual problem is

max
u
−f∗(ATu)− I∗K(−u)

where I∗K(y) = maxz∈K z
T y is the support function of K.

If K is a cone, we have I∗K(−u) = IK∗(u), the this is equivalent to

max
u
−f∗(ATu) subject to u ∈ K∗

where K∗ is the dual cone of K.

It is usually easier to handle cone constraints like u ∈ K∗ than constraints that the linear transform of x is
in a cone, i.e. Ax ∈ K.
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13.5 Double dual

Consider general minimization problem with linear constraints:

min
x

f(x)

subject to Ax ≤ b, Cx = d

The Lagrangian is
L(x, u, v) = f(x) + (ATu+ CT v)Tx− bTu− dT v

and hence the dual problem is

min
x

− f∗(−ATu− CT v)− bTu− dT v

subject to u ≥ 0

Recall property: f∗∗ = f if f is closed and convex. Hence in this case, we can show that the dual of the
dual is the primal.

Actually this also goes beyond linear constraints. Consider

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, ...,m

lj(x) = 0, j = 1, ..., r

If f and h1, ...hm are closed and convex, and l1, ...lr are affine, then the dual of the dual is the primal.

This is proved by viewing the minimization problem in terms of a bifunction. In this framework, the dual
function corresponds to the conjugate of this bifunction. See Chapter 29 and 30 of Rockafellar. [2]

13.6 Dual subtleties

• We often transform the dual into an equivalent problem and still call this the dual. Under strong
duality, we can use solutions of the (transformed) dual problem to characterize or compute the primal
solutions.

Warning: the optimal value of this transformed dual problem is not necessarily the optimal primal
value.

• A common trick in deriving duals for unconstrained problems is to first transform the primal by adding
a dummy variable and an equality constraint. e.g. The previous example of the lasso dual. Usually
there is ambiguity in how to do this. Different choices can lead to different dual problems.
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