
Homework 5

Advanced Methods for Data Analysis (36-402/36-608)

Due Thurs March 20, 2014 at 11:59pm

1 Additive abalones

You’ll be looking at (once again!) the abalone data. Refer back to Problem 2 of Homework 3 for a
description of the data set. Here we’ll be looking to predict the “whole weight” of abalones (column
5 of the abalone data frame), in a nonparametric fashion, from other predictors. Once you’ve read
in the abalone data frame, and saved it as say, aba, it will be helpful to name the columns of this
data frame:

colnames(aba) = c("Sex","Length","Diam","Height","Weight",

"Shucked","Viscera","Shell","Age")

(Remember that for the last column, we actually have to first add 1.5 to get the age in years.)
Most of the tasks in the parts below can be performed using the gam package (though the linear
models can also be fit with the standard lm function, of course). Global hint: make sure you utilize
the functionality provided by the gam package to answer the questions; this will save you a lot of
unnecessary programming. Look back at the code given in the additive models lecture for examples.

(a) Fit an additive model of Weight on Diam, Height, Age, and Sex. For each of Diam, Height,
Age, use a smoothing spline with 4 degrees of freedom. For Sex, use a linear smoother. Plot the
estimated regression functions (here there should be 4), along with estimates of their (pointwise)
standard errors. Describe and interpret the plots.

(b) For each variable in the model from part (a) (Diam, Height, Age, Sex), perform two F-tests:
one for the presence of a linear effect in this variable versus no effect at all, and one for the presence
of a nonlinear effect in this variable versus a linear effect—these are called tests for parametric and
nonparametric effects, respectively. (Note that for Sex, we would not perform the second test.)
Recall the proper interpretations for these tests: if a nonparametric test failed to reject, then we
would use a linear effect for the corresponding variable in the model; if a parametric test failed to
reject, then we would not include the corresponding variable in the model at all. What are the
results of the F-tests, and what effects would you make linear, or drop from the model, if any?

(c) Now you will fit 3 competing additive models to that in part (a), which we will call model 1:

• model 2: Weight on Diam (smoothing spline, 4 df) Height (smoothing spline, 4 df), and Sex

(linear)

• model 3: Weight on Diam (linear) Height (linear), and Sex (linear)

To compare the predictive accuracy of these 3 models, use 5-fold cross-validation. Report the cross-
validation estimates of prediction error for each of the 3 models, as well as the standard errors of
these estimates.
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(d) Compare the cross-validation results for models 1 and 2. Are the estimated prediction errors of
the two models comparable (within one standard error)? Hence, is the action you took to drop a
variable in part (b) justified, from the perspective of prediction error?

(e) Compare the cross-validation results for models 2 and 3. Again, are their estimated predic-
tion errors close, taking the standard errors into consideration? What do you conclude about the
importance of using nonlinear terms in model 2 versus linear ones in model 3?

(f) Model 2 generalizes model 3, in the sense that it replaces the linear terms (for Diam and Height)
by nonlinear ones. Another way to generalize model 3 is to include linear interaction terms. That
is, consider fitting yet another model:

• model 4: Weight on Diam (linear), Height (linear), Sex (linear), Diam * Sex (linear), and
Height * Sex (linear)

where in the above we have used a * b to denote the interaction between two variables a and b

(as per the formula notation used in gam or lm). Use 5-fold cross-validation again to estimate the
prediction error of this model. Compare the estimated prediction errors for models 2 and 4. Is one
better than the other, again taking into account standard errors?

(g) Now, we consider the complexities of models 2 and 4. Count the degrees of freedom of model
4—note that you can do this because it is simply a linear model. Count the degrees of freedom of
model 2—for an additive model, you can think of the degrees of freedom of the final fit as simply
the sum of the degrees of freedom of the individual smoothing operators, making sure not to double
count for the intercept. As a concrete example, the additive model:

• y on x1 (smoothing spline 7 degrees of freedom), x2 (smoothing spline, 4 degrees of freedom),
and x3 (linear)

where x1, x2, x3 are continuous variables, has (7− 1) + (4− 1) + 2 = 11 degrees of freedom. Here we
have been careful to only include the intercept term once (coupling it with the linear effect). Which
fitted model is more complex, according to its degrees of freedom, model 2 or model 4? What can
you say now about prediction error estimates that you compared in part (f), and the strength of the
additive model?

Bonus: leave-one-out in no time at all

Let r̂ denote the smoothing spline fitted regression function (at some fixed value of the smoothing
parameter λ), trained on (xi, yi), i = 1, . . . n. Let r̂−(i) denote the smoothing spline fit (again, at
the same fixed value of λ), but now trained on pairs (xj , yj), j 6= i.

(a) Consider the leave-one-out cross-validation error estimate

A =
1

n

n∑
i=1

(
yi − r̂−(i)(xi)

)2
,

and a weighted sum of the training errors

B =
1

n

n∑
i=1

(yi − r̂(xi)
1− Sii

)2
.

Here Sii is the ith diagonal matrix of the smoothing operator S defined on the full data set (xi, yi),
i = 1, . . . n, i.e., the matrix S is such that ŷ = (r̂(x1), . . . r̂(xn)) = Sy. Show empirically that these
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two are the same, i.e., A = B. You should create a simulated data set with sufficiently arbitrary
pairs (xi, yi), i = 1, . . . n, evaluate A and B, and show that they are extremely close (any differences
are due to rounding inaccuracies). Hint: to access the diagonal elements Sii, i = 1, . . . n, use the
lev component of the object returned by the smooth.spline function.

Note: this provides a huge computational savings for leave-one-out cross-validation with smooth-
ing splines! Why? To compute B, we don’t need to refit the smoothing spline operator (i.e., fit
r̂−(i), i = 1, . . . n) at all, we can simply use the original fitted regression function r̂.

(b) Prove that A = B.

(c) Does the analogous result hold for kernel regression? For k-nearest-neighbors?
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