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Density Estimation
Simon J. Sheather

Abstract. This paper provides a practical description of density estimation
based on kernel methods. An important aim is to encourage practicing statis-
ticians to apply these methods to data. As such, reference is made to imple-
mentations of these methods in R, S-PLUS and SAS.
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1. INTRODUCTION

Density estimation has experienced a wide ex-
plosion of interest over the last 20 years. Silver-
man’s (1986) book on this topic has been cited over
2000 times. Recent texts on smoothing which in-
clude detailed density estimation include Bowman and
Azzalini (1997), Simonoff (1996) and Wand and Jones
(1995). Density estimation has been applied in many
fields, including archaeology (e.g., Baxter, Beardah
and Westwood, 2000), banking (e.g., Tortosa-Ausina,
2002), climatology (e.g., Ferreyra et al., 2001), eco-
nomics (e.g., DiNardo, Fortin and Lemieux, 1996), ge-
netics (e.g., Segal and Wiemels, 2002), hydrology (e.g.,
Kim and Heo, 2002) and physiology (e.g., Paulsen and
Heggelund, 1996).

This paper provides a practical description of density
estimation based on kernel methods. An important aim
is to encourage practicing statisticians to apply these
methods to data. As such, reference is made to imple-
mentations of these methods in R, S-PLUS and SAS.
Section 2 provides a description of the basic proper-
ties of kernel density estimators. It is well known that
the performance of kernel density estimators depends
crucially on the value of the smoothing parameter,
commonly referred to as the bandwidth. We describe
methods for selecting the value of the bandwidth in
Section 3. In Section 4, we describe two recent im-
portant improvements to kernel methods, namely, local
likelihood density estimates and data sharpening. We
compare the performance of some of the methods that
have been discussed using a new example involving
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data from the U.S. PGA tour in Section 5. Finally, in
Section 6 we provide some overall recommendations.

2. THE BASICS OF KERNEL
DENSITY ESTIMATION

Let X1,X2, . . . ,Xn denote a sample of sizen from a
random variable with densityf .

The kernel density estimate off at the pointx is
given by

f̂h(x) = 1

nh

n∑
i=1

K

(
x − Xi

h

)
,(1)

where the kernelK satisfies
∫

K(x)dx = 1 and the
smoothing parameterh is known as the bandwidth. In
practice, the kernelK is generally chosen to be a uni-
modal probability density symmetric about zero. In this
case,K satisfies the conditions∫

K(y)dy = 1,

∫
yK(y)dy = 0,

∫
y2K(y)dy = µ2(K) > 0.

A popular choice forK is the Gaussian kernel, namely,

K(y) = 1√
2π

exp
(
−y2

2

)
.(2)

Throughout this section we consider a small gener-
ated data set to illustrate the ideas presented. The data
consist of a random sample of sizen = 10 from a
normal mixture distribution made up of observations
from N(µ = −1, σ 2 = (1/3)2) and N(µ = 1, σ 2 =
(1/3)2), each with probability 0.5. Figure 1 shows a
kernel estimate of the density for these data using the
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FIG. 1. Kernel density estimate and contributions from each data
point (dashed curve) along with the true underlying density (solid
curve).

Gaussian kernel with bandwidthh = 0.3 (the dashed
curve) along with the true underlying density (the solid
curve). The 10 data points are marked by vertical lines
on the horizontal axis. Centered at each data point is
each point’s contribution to the overall density esti-
mate, namely,(1/(nh))K((x −Xi)/h) (i.e., 1/n times
a normal density with meanXi and standard devia-
tion h). The density estimate (the dashed curve) is the
sum of these scaled normal densities. Increasing the
value ofh widens each normal curve, smoothing out
the two modes currently apparent in the estimate.

A Java applet that allows the user to watch the effects
of changing the bandwidth and the shape of the kernel
function on the resulting density estimate can be found
at http://www-users.york.ac.uk/∼jb35/mygr2.htm. It is
well known that the value of the bandwidth is of critical
importance, while the shape of the kernel function has
little practical impact.

Assuming that the underlying density is sufficiently
smooth and that the kernel has finite fourth moment, it
can be shown using Taylor series that

Bias{f̂h(x)} = h2

2
µ2(K)f ′′(x) + o(h2),

Var{f̂h(x)} = 1

nh
R(K)f (x) + o

(
1

nh

)
,

where

R(K) =
∫

K2(y) dy

(e.g., Wand and Jones, 1995, pages 20–21). In addition
to the visual advantage of being a smooth curve, the
kernel estimate has an advantage over the histogram in
terms of bias. The bias of a histogram estimator with

bin widthh is of orderh, whereas centering the kernel
at each data point and using a symmetric kernel zeroes
this term and as such produces a leading bias term for
the kernel estimate of orderh2.

Adding the leading variance and squared bias terms
produces the asymptotic mean squared error (AMSE)

AMSE{f̂h(x)} = 1

nh
R(K)f (x)+ h4

4
µ2(K)2[f ′′(x)]2.

A widely used choice of an overall measure of the
discrepancy between̂f andf is the mean integrated
squared error (MISE), which is given by

MISE(f̂h) = E

{∫ (
f̂h(y) − f (y)

)2
dy

}

=
∫

Bias(f̂h(y))2 dy +
∫

Var(f̂h(y)) dy.

Under an integrability assumption onf , integrating the
expression for AMSE gives the expression for the as-
ymptotic mean integrated squared error (AMISE), that
is,

AMISE{f̂h} = 1

nh
R(K) + h4

4
µ2(K)2R(f ′′),(3)

where

R(f ′′) =
∫

[f ′′(y)]2 dy.

The value of the bandwidth that minimizes the AMISE
is given by

hAMISE =
[

R(K)

µ2(K)2R(f ′′)

]1/5

n−1/5.(4)

Assuming thatf is sufficiently smooth, we can use in-
tegration by parts to show that

R(f ′′) =
∫

[f ′′(y)]2 dy = −
∫

f (4)(y)f (y) dy.

Thus, the functionalR(f ′′) is a measure of the under-
lying roughness or curvature. In particular, the larger
the value ofR(f ′′) is, the larger is the value of AMISE
(i.e., the more difficult it is to estimatef ) and the
smaller is the value ofhAMISE (i.e., the smaller the
bandwidth needed to capture the curvature inf ).

3. BANDWIDTH SELECTION FOR KERNEL
DENSITY ESTIMATES

In this section, we briefly review methods for choos-
ing a global value of the bandwidthh. Where ap-
plicable, reference is made to implementations of these
methods in R, S-PLUS and SAS.
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In SAS, PROC KDE produces kernel density esti-
mates based on the usual Gaussian kernel (i.e., the
Gaussian density with mean 0 and standard devia-
tion 1), whereas S-PLUS has a function density which
produces kernel density estimates with a default kernel,
the Gaussian density with mean 0 and standard devia-
tion 1/4. Thus, the bandwidths described in what fol-
lows must be multiplied by 4 when used in S-PLUS.
The program R also has a function density which pro-
duces kernel density estimates with a default kernel,
the Gaussian density with mean 0 and standard devia-
tion 1.

3.1 Rules of Thumb

The computationally simplest method for choosing
a global bandwidthh is based on replacingR(f ′′),
the unknown part ofhAMISE, by its value for a para-
metric family expressed as a multiple of a scale pa-
rameter, which is then estimated from the data. The
method seems to date back to Deheuvels (1977) and
Scott (1979), who each proposed it for histograms.
However, the method was popularized for kernel den-
sity estimates by Silverman (1986, Section 3.2), who
used the normal distribution as the parametric family.

Let σ and IQR denote the standard deviation and in-
terquartile range ofX, respectively. Take the kernelK

to be the usual Gaussian kernel. Assuming that the un-
derlying distribution is normal, Silverman (1986, pages
45 and 47) showed that (3) reduces to

hAMISENORMAL = 1.06σn−1/5

and
hAMISENORMAL = 0.79 IQRn−1/5.

Jones, Marron and Sheather (1996) studied the Monte
Carlo performance of the normal reference bandwidth
based on the standard deviation, that is, they considered

hSNR= 1.06Sn−1/5,

where S is the sample standard deviation. In SAS
PROC KDE, this method is called the simple nor-
mal reference (METHOD= SNR). Jones, Marron and
Sheather (1996) found thathSNR had a mean that was
usually unacceptably large and thus often produced
oversmoothed density estimates.

Furthermore, Silverman (1986, page 48) recom-
mended reducing the factor 1.06 in the previous equa-
tion to 0.9 in an attempt not to miss bimodality and
using the smaller of two scale estimates. This rule is
commonly used in practice and it is often referred to as

Silverman’s reference bandwidth or Silverman’s rule
of thumb. It is given by

hSROT= 0.9An−1/5,

where A = min{sample standard deviation, (sam-
ple interquartile range)/1.34}. In SAS PROC KDE,
this method is called Silverman’s rule of thumb
(METHOD = SROT). In R, Silverman’s bandwidth is
invoked by bw= “bw.nrd0”. In S-PLUS, Silverman’s
bandwidth with constant 1.06 rather than 0.9 is invoked
by width= “nrd”.

Terrell and Scott (1985) and Terrell (1990) de-
veloped a bandwidth selection method based on the
maximal smoothing principle so as to produce over-
smoothed density estimates. The method is based on
choosing the “largest degree of smoothing compati-
ble with the estimated scale of the density” (Terrell,
1990, page 470). Looking back at (3), this amounts to
finding, for a given value of scale, the densityf with
the smallest value ofR(f ′′). Taking the varianceσ 2

as the scale parameter, Terrell (1990, page 471) found
that the beta(4,4) family of distributions with vari-
anceσ 2 minimizesR(f ′′). For the standard Gaussian
kernel this leads to the oversmoothed bandwidth

hOS= 1.144Sn−1/5.

In SAS PROC KDE, this method is called over-
smoothed (METHOD= OS).

Comparing the oversmoothed bandwidth with the
normal reference bandwidthhSNR, we see that the
oversmoothed bandwidth is 1.08 times larger. Thus,
in practice there is often very little visual differ-
ence between density estimates produced using either
the oversmoothed bandwidth or the normal reference
bandwidth.

3.2 Cross-Validation Methods

A measure of the closeness off̂ andf for a given
sample is the integrated squared error (ISE), which is
given by

ISE(f̂h) =
∫ (

f̂h(y) − f (y)
)2

dy

=
∫

(f̂h(y))2 dy − 2
∫

f̂h(y)f (y) dy

+
∫

f 2(y) dy.

Notice that the last term on the right-hand side of the
previous expression does not involveh.
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Bowman (1984) proposed choosing the bandwidth
as the value ofh that minimizes the estimate of the two
other terms in the last expression, namely

1

n

n∑
i=1

∫
(f̂−i(y))2 dy − 2

n

n∑
i=1

f̂−i(Xi),(5)

wheref̂−i(y) denotes the kernel estimator constructed
from the data without the observationXi . The method
is commonly referred to as least squares cross-
validation, since it is based on the so-called leave-one-
out density estimator̂f−i (y). Rudemo (1982) proposed
the same technique from a slightly different viewpoint.
Bowman and Azzalini (1997, page 37) provided an ex-
plicit expression for (5) for the Gaussian kernel.

Stone (1984, pages 1285–1286) provided the follow-
ing straightforward demonstration that the second term
in (5) is an unbiased estimate of the second term in ISE.
Observe

E

[∫
f̂h(y)f (y) dy

]

=
∫ ∫

K

(
y − x

h

)
f (x) dx f (y) dy

= E

[
K

(
Y − X

h

)]
.

This leads to the unbiased estimate of
∫

f̂ (y) f (y) dy:

1

n(n − 1)h

∑
i �=j

∑
K

(
Xi − Xj

h

)
= 1

n

n∑
i=1

f̂−i(Xi).

Hall (1983, page 1157) showed that

1

n

n∑
i=1

∫
(f̂−i(y))2 dy =

∫
(f̂h(y))2 dy + Op

(
1

n2h

)

and hence changed the least squares cross-validation
(LSCV) based criterion from (5) to

LSCV(h) =
∫

(f̂h(y))2 dy − 2

n

n∑
i=1

f̂−i(Xi),

since “it is slightly simpler to compute, without affect-
ing the asymptotics.” This version is the one used by
most authors. We denote the value ofh that minimizes
LSCV(h) by hLSCV. Least squares cross-validation is
also referred to as unbiased cross-validation since

E[LSCV(h)] = E

[∫ (
f̂h(y) − f (y)

)2
dy

]

−
∫

f 2(y) dy

= MISE−
∫

f 2(y) dy.

In S-PLUS,hLSCV is invoked by width= “bandwidth.
ucv”, while in R it is invoked by bw= “bw.ucv”. The
least squares cross-validation function LSCV(h) can
have more than one local minimum (Hall and Marron,
1991). Thus, in practice, it is prudent to plot LSCV(h)

and not just rely on the result of a minimization rou-
tine. Jones, Marron and Sheather (1996) recommended
that the largest local minimizer of LSCV(h) be used
as hLSCV, since this value produces better empirical
performance than the global minimizer. The Bowman
and Azzalini (1997) library of S-PLUS functions con-
tains the function cv(y,h) which produces values of
LSCV(h) for the data sety over the vector of different
bandwidth values inh.

For the least squares cross-validation based criterion,
by using the representation

LSCV(h)(6)

= 1

nh
R(K) + 2

n2h

∑
i<j

∑
γ

(
Xi − Xj

h

)
,

whereγ (c) = ∫
K(w)K(w+c) dw−2K(c), Scott and

Terrell (1987) showed that

E[LSCV(h)] = 1

nh
R(K) + h4

4
µ2(K)2R(f ′′)

− R(f ) + O(n−1)

= AMISE{f̂h} − R(f ) + O(n−1).

Thus, least cross-validation essentially provides esti-
mates of R(f ′′), the only unknown quantity in
AMISE{f̂h}.

For a given set of data, denote the bandwidth that
minimizes ISE(f̂h) by ĥISE. A number of authors (e.g.,
Gu, 1998) argued that the ideal bandwidth is the ran-
dom quantityĥISE, since it minimizes the ISE for the
given sample. However,̂hISE is an inherently difficult
quantity to estimate. In particular, Hall and Marron
(1987a) showed that the smallest possible relative er-
ror for any data based bandwidthĥ is

ĥ

ĥISE
− 1= Op

(
n−1/10).

Hall and Marron (1987b) and Scott and Terrell (1987)
showed that the least squares cross-validation band-
width hLSCV achieves this best possible convergence
rate. In particular, they showed that

n1/10
(

hLSCV

ĥISE
− 1

)
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has an asymptoticN(0, σ 2
LSCV) distribution. The slow

n−1/10 rate of convergence means thathLSCV is highly
variable in practice, a fact that has been demon-
strated in many simulation studies (see Simonoff,
1996, page 76 for references). In addition to high
variability, least squares cross-validation “often un-
dersmooths in practice, in that it leads to spurious
bumpiness in the underlying density” (Simonoff, 1996,
page 76). On the other hand, a major advantage of least
squares cross-validation over other methods is that it is
widely applicable.

Figure 2 shows Gaussian kernel density estimates
based on two different bandwidths for a sample of
500 data points from the standard normal distribu-
tion. The 500 data points are marked as vertical bars
above the horizontal axis in Figure 2. The dramati-
cally undersmoothed density estimate (depicted by the
dashed line in Figure 2) is based on the bandwidth ob-
tained from least squares cross-validation, in this case
hLSCV = 0.059, while the density estimate depicted by
the solid curve in Figure 2 is based on the Sheather–
Jones plug-in bandwidth,hSJ (which is discussed be-
low). In this case,hSJ= 0.277. Since both the data and
the kernel in this example are Gaussian, it is possible to
perform exact MISE calculations (see Wand and Jones,
1995, pages 24–25 for details). The bandwidth which
minimizes MISE in this case ishMISE = 0.315.

Following the advice given above, Figure 3 contains
a plot of the least squares cross-validation function
LSCV(h) againsth. It is clear from this figure that the
value hLSCV = 0.059 is the unambiguous minimizer
of LSCV(h). Thus, least squares cross-validation has
performed poorly by depicting many modes in a situa-
tion in which the underlying density is easy to estimate

FIG. 2. Kernel density estimates based on LSCV (dashed curve)
and the Sheather–Jones plug-in (solid curve) for 500 data points
from a standard normal distribution.

FIG. 3. Plot of the least squares cross-validation function
LSCV(h) against h.

(see Wand and Jones, 1995, pages 36–39 for further
material on measuring how difficult a density is to es-
timate).

Scott and Terrell (1987) proposed a method called
biased cross-validation (BCV), which is based on
choosing the bandwidth that minimizes an estimate of
AMISE rather than an estimate of ISE. The BCV ob-
jective function is just the estimate of AMISE obtained
by replacingR(f ′′) in (3) by

R(f̂ ′′
h ) − 1

nh5R(K ′′),(7)

wheref̂ ′′
h is the second derivative of the kernel density

estimate (1) and the subscripth denotes the fact that
the bandwidth used for this estimate is the same one
used to estimate the densityf itself. The reason for
subtracting the second term in (6) is that this term is
the positive constant bias term that corresponds to the
diagonal terms inR(f̂ ′′

h ).
The BCV objective function is thus given by

BCV(h) = 1

nh
R(K) + h4

4
µ2(K)2

·
[
R(f̂ ′′

h ) − 1

nh5R(K ′′)
]

= 1

nh
R(K) + µ2(K)2

2n2h

∑
i<j

∑
φ

(
Xi − Xj

h

)
,

whereφ(c)=∫
K ′′(w)K ′′(w+c) dw (Scott and Terrell,

1987). Notice the similarity of this last equation and the
version of least squares cross-validation given in (6).

We denote the bandwidth that minimizes BCV(h)

by hBCV. In S-PLUS,hBCV is invoked by width=
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“bandwidth.bcv”, while in R it is invoked by bw=
“bw.bcv”. Scott (1992, page 167) pointed out that
limh→∞ BCV(h) = 0 and hence he recommended that
hBCV be taken as the largest local minimizer less
than or equal to the oversmoothed bandwidthhOS. On
the other hand, Jones, Marron and Sheather (1996)
recommend thathBCV be taken as the smallest local
minimizer, since they claim it gives better empirical
performance.

Scott and Terrell (1987) showed that

n1/10
(

hBCV

hAMISE
− 1

)

has an asymptoticN(0, σ 2
BCV) distribution. A related

result holds for least squares cross-validation, namely,
that

n1/10
(

hLSCV

hAMISE
− 1

)

has an asymptoticN(0, σ 2
LSCV) distribution (Hall and

Marron, 1987a; Scott and Terrell, 1987). According to
Wand and Jones (1995, page 80), the ratio of the two
asymptotic variances for the Gaussian kernel is

σ 2
LSCV

σ 2
BCV

� 15.7,

thus indicating that bandwidths obtained from least
squares cross-validation are expected to be much
more variable than those obtained from biased cross-
validation.

3.3 Plug-in Methods

The slow rate of convergence of LSCV and BCV
encouraged much research on faster converging meth-
ods. A popular approach, commonly called plug-in
methods, is to replace the unknown quantityR(f ′′) in
the expression forhAMISE given by (3) with an esti-
mate. The method is commonly thought to date back
to Woodroofe (1970), who proposed it for estimat-
ing the density at a given point. EstimatingR(f ′′)
by R(f̂ ′′

g ) requires the user to choose the bandwidth
g for this so-called pilot estimate. There are many
ways this can be done. We next describe the “solve-
the-equation” plug-in approach developed by Sheather
and Jones (1991), since this method is widely recom-
mended (e.g., Simonoff, 1996, page 77; Bowman and
Azzalini, 1997, page 34; Venables and Ripley, 2002,
page 129).

Different versions of the plug-in approach depend on
the exact form of the estimate ofR(f ′′). The Sheather
and Jones (1991) approach is based on writingg, the

pilot bandwidth for the estimateR(f̂ ′′), as a function
of h, namely,

g(h) = C(K)

[
R(f ′′)
R(f ′′′)

]1/7

h5/7,

and estimating the resulting unknown functionals off

using kernel density estimates with bandwidths based
on normal rules of thumb. In this situation, the only
unknown in the following equation ish:

h =
[

R(K)

µ2(K)2R(f̂ ′′
g(h))

]1/5

n−1/5.

The Sheather–Jones plug-in bandwidthhSJ is the so-
lution to this equation. In S-PLUS,hSJ is invoked by
width = “bandwidth.sj”, while in R it is invoked by
bw = “bw.SJ”. In SAS PROC KDE, this method is
called Sheather–Jones plug-in (METHOD= SJPI).

Under smoothness assumptions on the underlying
density,

n5/14
(

hSJ

hAMISE
− 1

)

has an asymptoticN(0, σ 2
SJ) distribution. Thus, the

Sheather–Jones plug-in bandwidth has a relative con-
vergence rate of ordern−5/14, which is much higher
than that of BCV. Most of the improvement is because
BCV effectively uses the same bandwidth to estimate
R(f ′′) as it does to estimatef , while the Sheather–
Jones plug-in approach uses different bandwidths.
However, it is important to note that the Sheather–
Jones plug-in approach assumes more smoothness of
the underlying density than either LSCV or BCV.

Jones, Marron and Sheather (1996) found that for
easy to estimate densities [i.e., those for whichR(f ′′)
is relatively small], the distribution ofhSJ tends to
be centered nearhAMISE and has much lower vari-
ability than the distribution ofhLSCV. For hard to es-
timate densities [i.e., those for which|f ′′(x)| varies
widely], they found that the distribution ofhSJ tends to
be centered at values larger thanhAMISE (and thus over-
smooths) and again has much lower variability than the
distribution ofhLSCV.

A number of authors recommended that density esti-
mates be drawn with more than one value of the band-
width. Scott (1992, page 161) advised looking at “a se-
quence of (density) estimates based on the sequence of
smoothing parameters

h = hOS/1.05k for k = 0,1,2, . . . ,
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starting with the sample oversmoothed bandwidthhOS
and stopping when the estimate displays some instabil-
ity and very local noise near the peaks.” Marron and
Chung (2001) also recommend looking at a family of
density estimates for the given data set based on dif-
ferent values of the smoothing parameter. Marron and
Chung (2001, page 198) advised that this family be
based around a “center point” which is “an effective
choice of the global smoothing parameter.” They rec-
ommended the Sheather–Jones plug-in bandwidth for
this purpose. Silverman (1981) showed that an impor-
tant advantage of using a Gaussian kernel is, in this
case, that the number of modes in the density estimate
decreases monotonically as the bandwidthh increases.
This means that the number of features in the esti-
mated density is a decreasing function of the amount
of smoothing.

4. POTENTIAL IMPROVEMENTS TO KERNEL
DENSITY ESTIMATES

In this section, we consider recent improvements to
kernel density estimates. We focus on two such im-
provements, namely local likelihood density estimates
and data sharpening for density estimation.

4.1 Local Likelihood Density Estimates

One of the shortcomings of kernel density estimates
is increased bias at and near the boundary. Wand and
Jones (1995, pages 46–47) provided a detailed discus-
sion of this phenomenon. One way to overcome this
bias is to use a so-called boundary kernel, which is a
modification of the kernel at and near the boundary. An
alternative and more general approach is to use a local
likelihood density estimate, which we discuss next.

The local log-polynomial likelihood density estimate
of f (x) is produced by fitting, via maximum likeli-
hood, a density of the form

ψ(u) = ψ(u − x|θ0, θ1, . . . , θp)

= exp

[ p∑
j=0

θj (u − x)j

]

in the neighborhood ofx. As such,θ = (θ0, θ1, . . . , θp)

is chosen to maximize

1

nh

n∑
i=1

K

(
Xi − x

h

)
log

(
ψ(Xi − x|θ)

)
(8)

− 1

h

∫
K

(
u − x

h

)
ψ(u − x|θ) du.

If the bandwidthh is large, then the second term in (8)
is close to zero and the first term in (8) is close to pro-
portional to the log-likelihood, assuming that the den-
sity of x is ψ .

Let θ̂ = θ̂ (x) = (θ̂0, θ̂1, . . . , θ̂p) denote this maxi-
mum. Then the local log-polynomial likelihood density
estimate off (x) of degreep is given by

f̂LLPE(x) = exp(θ̂0)

(Hjort and Jones, 1996; Loader, 1996). The Loader
(1999) library of S-PLUS functions, LOCFIT, contains
functions that calculate local likelihood density esti-
mates.

Taking p = 1 in (8) produces a density estimator
with asymptotic bias of the same order as a kernel den-
sity estimator and thus it too suffers from the boundary
bias problem described above. Takingp = 2 in (8) pro-
duces a density estimator with asymptotic bias iden-
tical to that of a boundary kernel, which corrects for
boundary bias. In other words, any local likelihood
density estimator based onp = 2 automatically cor-
rects for boundary bias without having to explicitly de-
fine a boundary kernel.

Another advantage of local likelihood density es-
timators is that choosing a high value ofp in (8)
produces density estimators with optimal rates of con-
vergence without the spurious bumps and wiggles, and
without the problem of taking negative values that are
characteristic of higher-order kernel estimators.

On the other hand, Hall and Tao (2002) argued that
kernel density estimators can have distinct advantages
over local likelihood density estimators when edge ef-
fects are not present. In the log-linear case (i.e.,p = 1),
Hall and Tao (2002) showed that “the asymptotic inte-
grated squared bias (ISB) of a local log-linear estima-
tor is strictly greater than its counterpart in the kernel
case, whereas the asymptotic integrated squared vari-
ances are identical. Moreover, the ISB for local log-
linear estimators can be up to four times greater, for
densities that have two square integrable derivatives.
Furthermore, this excess of bias occurs in cases where
the bias is already large, and that fact tends particu-
larly to exacerbate global performance difficulties ex-
perienced by local log-linear likelihood.”

4.2 Data Sharpening

A new general method for reducing bias in density
estimation recently was proposed by Hall and Minnotte
(2002). The method is known as data sharpening, since
it involves moving the data away from regions where
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they are sparse toward regions where the density is
higher.

The method of Hall and Minnotte (2002) is based
on the following result: IfHr is a smooth distribution
function with the property

∫
K(u)H ′

r (x − hu)du =
f (x) + O(hr) andγr = H−1

r (F̄ ), whereF̄ is the dis-
tribution function that corresponds to the densityf̄ =
E(f̂h), then under smoothness conditions onf ,

1

h
E

[
K

(
x − γr(Xi)

h

)]
= f (x) + O(hr).

Comparing this last result with (1), we see that replac-
ing the dataXi byγr(Xi), its so-called sharpened form,
produces an estimator off (x) which is always positive
and for which the bias isO(hr) (r = 4,6,8, . . . ) rather
than theO(h2) bias off̂h(x).

In practice,γr has to be estimated. Using a Taylor se-
ries expansion onHr and plug-in estimators, Hall and
Minnotte (2002) produced the estimators

γ̂4 = I + h2µ2(K)

2

f̂ ′

f̂
,

γ̂6 = γ̂4 + h4
{(

µ4(K)

24
− µ2(K)2

2

)
f̂ ′′′

f̂

+ µ2(K)2

2

f̂ ′′f̂ ′

f̂ 2
− µ2(K)2

8

(f̂ ′)3

f̂ 3

}
,

whereI denotes the identity function. Thus, the data
sharpened density estimator of orderr is given by

f̂r,h(x) = 1

nh

n∑
i=1

K

(
x − γ̂r (Xi)

h

)
.

Using a different approach, Samiuddin and El-Sayyad
(1990) obtained the expression forf̂4,h. Note that the
same bandwidthh is used for the original estimatêf ,
all necessary derivatives and the final sharpened esti-
mate. This ensures that bias terms cancel.

Finally, Hall and Minnotte (2002) discovered by
Monte Carlo simulation that the optimal bandwidth for
a sharpened density estimator is larger than the optimal
bandwidth for a second-order kernel density estimator.

5. REAL DATA EXAMPLE

In this section we compare the performance of a
number of the bandwidth selection methods described
in Section 3 on a new example that involves data from
the PGA golf tour. A number of other examples can be
found in Sheather (1992).

In this example we look at data on putts per round,
which is the average number of putts per round played
for the top 175 players on the 1980 and 2001 PGA
tours. The data were taken fromhttp://www.golfweb.
com/stats/leaders/r/1980/119 andhttp://www.golfweb.
com/stats/leaders/r/2001/119. Interest centers on com-
paring the results for the two years to determine if there
has been any improvement.

Figure 4 shows Gaussian kernel density estimates
based on two different bandwidths for the data from
1980 and 2001 combined. The resulting 350 data
points are marked as vertical bars above the horizontal
axis in Figure 4. The density estimate depicted by the
dashed line in Figure 4 is based on the bandwidth ob-
tained from least squares cross-validation. In this case,
hLSCV = 0.054, producing an estimate with at least
four modes, while the density estimate depicted by the
solid curve in Figure 4 is based on the Sheather–Jones
plug-in bandwidthhSJ. In this case,hSJ= 0.154, pro-
ducing an estimate with just two modes, which we see
below correspond to the fact that the data come from
two separate years.

Figure 5 shows Gaussian kernel density estimates
based on two different bandwidths for the separate
data sets from 1980 and 2001. The density estimates
depicted by the dashed line in Figure 5 are based
on the bandwidths obtained from least squares cross-
validation. In this case,hLSCV = 0.061 (for 2001)
and 0.187 (for 1980), while the density estimates de-
picted by the solid curve in Figure 5 are based on the
Sheather–Jones plug-in bandwidthhSJ. In this case,
hSJ = 0.121 (for 2001) and 0.158 (for 1980). While
the two density estimates are very similar for 1980,
the same is not true for 2001. The density estimate for

FIG. 4. Kernel density estimates based on LSCV (dashed curve)
and the Sheather–Jones plug-in (solid curve) for the data from 1980
and 2001 combined.
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FIG. 5. Kernel density estimates based on LSCV (dashed curve)
and the Sheather–Jones plug-in (solid curve) produced separately
for the data from 1980 and 2001.

2001 based on LSCV produces at least three modes.
When one considers that the data are in the form of
averages taken over at least 43 rounds, the density esti-
mates based on the Sheather–Jones plug-in bandwidth
seem to be more reasonable.

Figure 6 shows a Gaussian kernel density estimate
and a sixth-order sharpened estimate for the PGA data
from 1980 and 2001 combined. The density estimate
depicted by the solid curve in Figure 6 is based on the
Sheather–Jones plug-in bandwidthhSJ. The density es-
timate depicted by the dashed line in Figure 6 is based
on the sharpened estimate with bandwidth equal tohSJ.
In this case, the sharpened estimate displays the two
modes more distinctly.

FIG. 6. Kernel density estimate based on the Sheather–Jones
plug-in (solid curve) and a sixth-order sharpened estimate for the
data from 1980 and 2001 combined.

6. RECOMMENDED APPROACH

We conclude with the following recommended ap-
proach to density estimation: Always produce a family
of density estimates based on a number of values of the
bandwidth. Following Marron and Chung (2001), we
recommend that this set of estimates be based around
a “center point” bandwidth. Natural choices of this
center point bandwidth include the Sheather–Jones
plug-in bandwidth hSJ and least squares cross-
validation hLSCV. The Sheather–Jones plug-in band-
width is widely recommended due to its overall good
performance. However, for hard to estimate densities
[i.e., those for which|f ′′(x)| varies widely] it tends
to oversmooth. In these situations, least squares cross-
validation often provides some protection against this,
due to its tendency to undersmooth. Recall that it is
important to plot the least squares cross-validation
function LSCV(h) and not just rely on the result of
a minimization routine. Finally, density estimates with
more than one mode can be generally improved by us-
ing a higher-order sharpened estimate.
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