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Abstract

We present a new view of clustering and seg-
mentation by pairwise similarities. We inter-
pret the similarities as edge flows in a Markov
random walk and study the eigenvalues and
eigenvectors of the walk’s transition matrix.
This view shows that spectral methods for
clustering and segmentation have a proba-
bilistic foundation. We prove that the Nor-
malized Cut method arises naturally from
our framework and we provide a complete
characterization of the cases when the Nor-
malized Cut algorithm is exact. Then we dis-
cuss other spectral segmentation and cluster-
ing methods showing that several of them are
essentially the same as NCut.

1 Introduction

This paper focuses on pairwise (or similarity-based)
clustering and image segmentation. In contrast to sta-
tistical clustering methods, that assume a probabilistic
model that generates the observed data points (or pix-
els), pairwise clustering defines a similarity function
between pairs of points and then formulates a crite-
rion (e.g. maximum total intracluster similarity) that
the clustering must optimize. The optimality criteria
quantify the intuitive notion that points in a cluster
(or pixels in a segment) are similar, whereas points in
different clusters are dissimilar. The similarities are
considered as given in the context of the clustering al-
gorithm; in practice (document clustering, image seg-
mentation) finding a “good” similarity function is part
of the art of the domain practitioner.

An increasingly popular approach to similarity based
clustering and segmentation is by spectral methods.
These methods use eigenvalues and eigenvectors of a
matrix constructed from the pairwise similarity func-
tion (e.g. LSA [2]). Spectral methods are sometimes
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regarded as approximations of previously formulated
criteria (e.g. [10, 4]) and sometimes are motivated by
graph theoretical considerations (e.g. the web cluster-
ing method of [6]). As demonstrated in [10, 6], these
methods are capable of delivering impressive image
segmentation results using simple low-level image fea-
tures. Moreover, computational efficiency is achieved
using sparse [10, 3] matrix techniques.

The main achievement of this work is to show that
there is a simple probabilistic interpretation that can
offer insights and serve as an analysis tool for all the
spectral methods cited above. We view the pairwise
similarities as edge flows in a Markov random walk and
study the properties of the eigenvectors and values of
the resulting transition matrix. Using this view, we
were able to show that several of the above methods
are subsumed by the Normalized Cut (NCut) image
segmentation algorithm of [10] in a sense that will be
described. Therefore, in the following, we will focus on
the NCut algorithm and will adopt the terminology of
image segmentation (i.e. the data points will be pizels
and the set of all pixels is the image), keeping in mind
that all the results are also valid for similarity based
clustering.

2 The Normalized Cut criterion and
algorithm

Here and in the following, an image will be represented
by a set of pixels I. A segmentation is a partioning
of I into mutually disjoint subsets. For each pair of
pixels ¢,j € I a similarity S;; = Sj; > 0 is given. In
the NCut framework the similarities S;; are viewed as
weights on the edges ij of a graph G over I. If S;; =0
then G has no edge ij. The matrix S = [S;;] plays the
role of a “real-valued” adjacency matrix for G. Let
d; = Z]EI Sij, called the degree of node i, and the
volume of aset A C I'bevolA = 3, d;.. Theset of
edges between A and its complement A is an edge cut
or shortly a cut. The normalized cut (NCut) criterion



of [10] is a graph theoretical criterion for segmenting
an image into two by minimizing

- 1 1
NCut(4,4) = (VOIA * volA)

over all cuts 4, A. Minimizing NCut means finding
a cut of relatively small weight between two subsets
with strong internal connections. In [10] it is shown
that optimizing the NCut criterion is NP hard.
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The NCut algorithm was introduced in [10] as an ap-
proximate method of solving the minimum NCut prob-
lem by way of eigenvalues and eigenvectors. It uses the
Laplacian matrix L = D — S where D is a diagonal
matrix formed with the degrees of the nodes. The
algorithm consists of solving the generalized eigenval-
ues/vectors problem

Lz = ADz (2)

The NCut algorithm focuses on the second smallest
eigenvalue of (2) and its corresponding eigenvector,
call them A\ and z” respectively.

Figure 1 shows an example of a similarity matrix that
has a pronounced block structure (Ib), and its first 3
generalized eigenvectors (IITa). In the figure we see
that the elements of o’ have approximately the same
value within each cluster. In [10] it is shown that when
there is a partitioning of A, A of I such that

L _ Qa, 1€ A
Ti _{/3, icA (3)

then A, A is the optimal NCut and the value of the cut
itself is NCut(A4,A) = AE.

This result represents the basis of spectral segmenta-
tion by normalized cuts. One solves the generalized
spectral problem (2), then finds a partitioning of the
elements of z” into two sets containing roughly equal
values. The partitioning can be done by threshold-
ing the elements. The partitioning of the eigenvector
induces a partition on I which is the desired segmen-
tation. To obtain more than two segments one pro-
ceeds recursively. We call this procedure the NCut
algorithm. A vector that satisfies (3) is called piece-
wise constant w.r.t. the partition (A, A). In section 4
and later we consider eigenvectors which are piecewise
constant w.r.t a partition of I into k sets.

As presented above, the NCut algorithm lacks a satis-
factory intuitive explanation. In particular, the NCut
algorithm and criterion offer little intuition about (1)
what causes 2 to be piecewise constant? (2) what
happens when there are more than two segments and
(3) how does the algorithm degrade its performance
when z! is not piecewise constant?

The random walk interpretation that we describe now
will answer the first two questions as well as give a bet-
ter understanding of what spectral clustering is achiev-
ing. We shall not approach the third issue here: in-
stead, we point to the results of [4] that apply to the
NCut algorithm as well.

3 Markov walks and normalized cuts

By “normalizing” the similarity matrix S one obtains
the stochastic matrix

P = D7'S (4)

whose row sums are all 1. As it is known from the
theory of Markov random walks, P;; represents the
probability of moving from node i to j in one step,
given that we are in i. The eigenvalues of P are \; =
1> X > ...\, > —1; 2" are the eigenvectors.
The first eigenvector of P is #! =1, the vector whose
elements are all equal to 1. W.l.o.g we assume that no
node has degree 0.

Let us now examine the spectral problem for the ma-
trix P, namely the solutions of the equation

Pz = \x (5)

Proposition 1 If A\, © are solutions of (5) and P =
D718, then (1 — X), = are solutions of (2).

In other words, the NCut algorithm and the matrix
P have the same eigenvectors; the eigenvalues of P
are identical to the difference between 1 and the gen-
eralized eigenvalues in (2). Proposition 1 shows the
equivalence between the spectral problem formulated
by the NCut algorithm and the eigenvalues/vectors of
the stochastic matrix P. This also helps explaining
why the NCut algorithm uses the second smallest gen-
eralized eigenvector: the smallest eigenvector of (2)
corresponds to the largest eigenvector of P, which in
most cases of interest is equal to 1 thus containing no
information. The proof of proposition 1 is elementary
and therefore left as an exercise to the reader.

The NCut criterion can also be understood in this

framework. First define #°° = [78°];c; by
oo d;
T Sl (©)

It is easy to verify that P77 = 7°° and thus that 7°°
is a stationary distribution of the Markov chain. If the
chain is ergodic, which happens under mild conditions
[1], then 7°° is the only distribution over I with this
property. Note also that the Markov chain is reversible
because

7T;~>0Pij = W;?opji = Sij/VOII. (7)
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Figure 1: Four matrices (row I), their eigenvalues (row II) and first 3 eigenvectors: z' '—’, z?(= z” in b,d) ’o’, z° ¥’

(row III). All matrices are represented on a gray-scale with black for 0 and lighter shades for higher values. All matrices
correspond to “images” of 20 pixels forming 3 segments. (a) An approximately block-diagonal stochastic matrix P;. The
second and third eigenvector are approximately piecewise constant and contain information about the segmentation. (b)
The symmetric similarity matrix which produced Pi. Note that all three first eigenvectors contain information about the
segmentation. The eigenvectors solving (2) for this matrix are identical to the eigenvectors of Pi. (c) A block-stochastic

matrix Ps.

The second and third eigenvectors are piecewise constant and reflect the correct segmentation.

(d) The

symmetric similarity matrix that produced P»>. The first 3 eigenvectors are only roughly piecewise constant and result in

a wrong segmentation.

Define P4ag = Pr[A — B|A] as the probability of the
random walk transitioning from set A C I toset B C I
in one step if the current state is in A and the random
walk is started in its stationary distribution.

p _ EieA,jeB 7 Pij _ ZieA,jeB Sij 8)
AB 7o (A) vol(4)
From this it follows that

If the NCut is small for a certain partition A, A then
it means that the probabilities of evading set A, once
the walk is in it and of evading its complement A are
both small. Intuitively, we have partioned the set I
into two parts such that the random walk, once in one
of the parts, tends to remain in it.

The NCut is strongly related to a the concept of low
conductivity sets in a Markov random walk. A low
conductivity set A is a subset of I such that h(A) =
max( Py 4,Pz4) is small. They have been studied in
spectral graph theory in connection with the mizing
time of Markov random walks [1]. More recently, [4]

uses them to define a new criterion for clustering. Not
coincidentally, the heuristic analyzed there is strongly
similar to the NCut algorithm.

4 Stochastic matrices with piecewise
constant eigenvectors

In the following we will use the transition matrix P
to achieve a better understanding of the NCut algo-
rithm. Recall that the NCut algorithm looks at the
second “largest” eigenvector of P, denoted by z? and
equal to 2, in order to obtain a partioning of I. We
define a vector x to be piecewise constant relative to a
partition A = (Ay, As,... Ag) of I iff z; = x; for i, j
pixels in the same set A,, s = 1,...k. Note that the
first eigenvector of P, being 1, is always piecewise con-
stant. Since having piecewise constant eigenvectors is
essential for spectral segmentation, it is important to
understand when the matrix P has this desired prop-
erty. We study when the first k& out of n eigenvectors
are piecewise constant.

Proposition 2 Let P be a matriz with rows and



columns indexed by I that has independent eigenvec-
tors. Let A = (Ay,As,...A) be a partition of I.
Then, P has k eigenvectors that are piecewise con-
stant w.r.t. A and correspond to non-zero eigenvalues
if and only if the sums P;s = ZjeAs P;; are constant
for all i € Ay and all s,s8'" = 1,...k and the matrix
R= [Pss’]s,s’ZL...k (’Ullth Py = ZJ'EA’S Pij; i € As) 18
non-singular.

Lemma 3 If the matrix P of dimension n is of the
form P = D™'S with S symmetric and D non-singular
then P has n independent eigenvectors.

The proof of the lemma is elementary and therefore
omitted; proposition 2 is proved in the appendix. We
call a stochastic matrix P satisfying the conditions of
Proposition 2 a block-stochastic matrix. Intuitively,
Proposition 2 says that a stochastic matrix has piece-
wise constant eigenvectors if the underlying Markov
chain can be aggregated into a Markov chain with state
space A = {4;,... A} and transition probability ma-
trix P. This opens interesting connections between the
field of spectral segmentation and the body of work on
aggregability or (lumpability) [5] of Markov chains.

It has been already shown [12, 4, 10] that for a discon-
nected graph G (resulting in a block diagonal S) the
NCut algorithm and several others work correctly. A
block diagonal S is a block-stochastic matrix for which
P is the unit matrix. It represents the case when pix-
els in different segments are strongly dissimilar. This
case, illustrated in figure 1 (a,b), is by far the easiest
situation for a segmentation problem.

Now Proposition 2 shows that in fact spectral cluster-
ing is able to group pizels by the similarity of their
transition probabilities to subsets of I. This situation
is shown in figure 1,c,d. Experiments [10] show that
NCut works well on many graphs that are not discon-
nected supporting this result with practical evidence.

However, having piecewise constant eigenvectors is
only part of the story. It is also necessary that the
eigenvalues of P, corresponding to the piecewise con-
stant eigenvectors be larger than the other n —k eigen-
values of P, that we shall call spurious eigenvalues.

With the above insights, we can define an abstract
algorithm called Modified NCut (MNCut) which finds
all k segments in one pass by: (1) computing P from
S, its eigenvalues/vectors (2) selecting the largest k
eigenvalues and their corresponding eigenvectors (3)
extracting the segments by finding the approximately
equal elements in the selected eigenvectors. This last
step can be done e.g. by projecting onto or by k-means
(with k known) in the k£ — 1 dimensional space defined
by the rows of [z%...z"].
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Figure 2: Image segmentation by the MNCut algo-
rithm: (a) the original image; (b) the output of the
edge detector; (c,d) segmentation by MNCut using the
first 6 respectively 7 eigenvectors and k-means cluster-
ing. Two pixels are dissimilar if they are more than
30 apart or if they are separated by an edge; other-
wise they are considered similar. Note that even with
this simple similarity measure and in spite of the many
stripes, most of the tiger is segmented correctly.

Proposition 4 The MNCut algorithm is_ezact if P
is block-stochastic and the eigenvalues of P are larger
than the spurious eigenvalues.

Thus MNCut exploits both dissimilarities between pix-
els in different segments and similarity of transitions
for pixels in the same segment.

The MNCut approach has another potential advan-
tage: if there is a gap between the eigenvalues of P
and the spurious eigenvalues (as in figure 1, ¢, d), then
the number of segments k can be determined automat-
ically. This is likely to happen when (i) P approaches
the unit matrix, its eigenvalues tending to 1, and (ii)
the rows of P in the same segment tend to be equal,
pushing the spurious eigenvalues toward 0. Thus, once
again, a mix of dissimilarity between clusters and sim-
ilarity of transitions describes a data set that is natu-



rally clustered.

5 Relationship to other spectral
segmentation methods

The NCut algorithm and criterion is only one of the re-
cently proposed segmentation methods that use eigen-
vectors. Here we discuss a few others: the segmenta-
tion algorithms of Perona and Freeman (PF) [8] and of
Scott and Longuet-Higgins (SLH) [9]. In addition, we
discuss two clustering methods that have the same fla-
vor: the Kleinberg algorithm for discovering web com-
munities (K) [6] and the long known latent semantic
analysis (LSA) in the variant proposed by Kannan,
Vempala and Vetta (KVV) [4].

For the algorithms of PF, SLH, and K we established
the following: Each of them has an “ideal” case for
which it will work exactly. For PF, the ideal case is
the case when S is block diagonal. For SLH, when the
n x n matrix Q = [yty?..y*|[y'y%. ¥*]7, with yly?. .y*
the eigenvectors of S, has element @);; = 1 if pixels
1,7 are in the same segment and 0 otherwise. The K
algorithm allows one to pursue a variety of objectives.
One of them is finding clusters of related documents.
For this objective, the ideal case corresponds to a di-
rected link graph consisting of several disconnected d-
regular clusters. Then the second eigenvector used by
K will be piecewise constant w.r.t to this partition. In
practice, however, the K algorithm finds the elements
of the eigenvector that are largest in magnitude and
returns them as representative or “authoritative” for
the cluster. We conjecture that these elements cor-
respond to the the pages with highest degree (most
links) within the cluster. Proving this conjecture is a
topic of current research.

It is easy to show that each of the above ideal sit-
uations imply that the resulting stochastic matrix P
satisfies the conditions of Proposition 4 and thus the
MNCut algorithm will also work exactly in these sit-
uations. In this sense NCut subsumes PF, SLH and
(certain variants of) K. Moreover, none of the three
other methods takes into account more information
than NCut does.

Another important aspect of a spectral clustering al-
gorithm is robustness. Empirical results of [12] show
that NCut is at least as robust as PF and SLH in
practical situations.

The algorithm of KVV is essentially a special case
of MNCut where: S;; is defined as fI'f; with f;, f;
vectors of positive features; the method in step (3)
is projection onto the scaled eigenvectors Asz®. [4]
proves error bounds that depend on the deviation of
S from block-diagonality for both KVV and the recur-

sive NCut algorithm. These are the only robustness
results for the NCut algorithm that we know of.

6 Conclusions

The relationship between the Laplacian of a graph
and Markov chains has been known [1] but so far it
has been used mainly to estimate mixing properties
of chains by way of cuts. This paper opens a new
perspective: revealing the properties of the underlying
weighted graph by ways of the Markov chain. This
shift in perspective is made even more valuable be-
cause of the successes of sampling techniques [10, 3] in
tractably obtaining low rank approximations to very
large matrices. As the case of LSA proves it, these al-
gorithms are used in practice on large scale problems.

Our view has provided an elegant analysis method. It
has enabled us to give a complete and intuitive char-
acterization of the NCut algorithm. We analyzed sev-
eral other algorithms with the same tool to realize that
they look at the same kind of features (mainly dissimi-
larity between pixels in different clusters) so that both
technically and from the end result point of view, they
are in fact all variants of the same algorithm.

We argue for studying the MNCut algorithm as a clus-
tering criterion in its own right. MNCut is one of
the rare cases when a clustering method is both un-
derstandable, computationally tractable (or approx-
imable with known bounds) and yielding itself to anal-
ysis. We may then study other clustering criteria (see
[3]) as approximating MNCut and conclude that they
are not so different from each other after all.

But we can also formulate clustering criteria that are
genuinely different: for example, an eigenvalue of P
near -1 is an indication that the graph is bipartite. We
can easily imagine an algorithm for bipartite clustering
by simply looking at the eigenvector corresponding to
the most negative eigenvalue.

Another exciting issue is finding ways to balance num-
ber of clusters and clustering quality, in other words
automatically finding the number of clusters. We think
that the Markov chain perspective can be fruitful in
this respect as well. Two very innovative approaches
exist already in [4] and [11].

The implications are even further reaching: For ex-
ample, in many cases S is obtained from a positive
symmetric kernel. We can transfer our results about
P to characterizations of the kernel classes that sat-
isfy certain requirements or to characterizations of the
data distribution that is “fit for clustering”. The tran-
sition matrix view also tells us how to combat “ridge
effects” in kernel derived similarity matrices.



In vision, a common issue is combining multiple cri-
teria (e.g color, texture) into one similarity matrix.
The Markov walk perspective helps us to find combina-
tion operators that preserve the underlying clustering
(i.e. that preserve block stochasticity). For example, a
convex combination of transition matrices preserves it,
while elementwise product, a popular method for com-
bining multiple S matrices, doesn’t. We address this
issues and propose a method for learning the optimal
combination in [7].

A Proof of Proposition 2

“=” We assume that P has k independent and piece-
wise constant eigenvectors z',...z* w.r.t. to the
partition A that correspond to non-zero eigenvalues
A1 ... Ag. For z a piecewise constant vector w.r.t A,
let z — y be the one-to-one mapping that associates
x with the k-dimensional vector y consisting of one

element of = from each segment, i.e.
y(x)s = w; fori € A;, s=1,...k (10)
Denote by y' = y(z!) for i =1,.. k.

Fix i,i' € A, for some s = 1,...k. We have

k
(Pz')i = > | Y Py |y = Nai (11)
s'=1 JEA
k
(P:L’l) = Z Z Pirj yi/ = Almér (12)
s'=1 \jEA,
for each eigenvector 2,1 = 1,...k. Denote Py =

Z].GASI Pija Pi’s’ = Z].GASI Pi’j- By substracting
equation (12) from (11) we get
k

Z(Pis’_Pi’s’)yls’ =0 fOI‘l:].,...k? (13)

s'=1
This is a linear system of k& equations and k& unknowns,
with coefficients y!,. Since the eigenvectors are inde-
pendent, the above system’s matrix is non-singular,
implying that the system admits only the trivial so-
lution P,y — Pug = 0. Since 4,4’ and the segment s
are arbitrary, it follows that for all i € A, the sums
P, s' =1,...k are constant in each segment A, and
can be denoted by the symbol Ps, .

Construct now the matrix P = [Post]s,sr=1, k- It is
easy to verify that the eigenvectors/values of P are
y',...y" and Ai,...\. Since the latter are all non-
zero, it follows that P is non-singular.

“<” We now have to prove the converse, i.e. that
if P exists and is non-singular then P has k eigen-
vectors that are piecewise constant w.r.t the parti-
tion A and their eigenvalues are non-zero. Denote by

vy, \i, I = 1,...k the eigenvectors/values of P. Now
we can simply verify that 2! = 2(y!) for I = 1,...k are
independent eigenvectors of P each corresponding to
AL [
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