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Robust Locally Weighted Regression and Smoothing 

Scatterplots 
WILLIAM S. CLEVELAND* 

The visual information on a scatterplot can be greatly enhanced, An early example of smoothing scatterplots is given 
with little additional cost, by computing and plotting smoothed 
points. Robust locally weighted regression is a method for smoothing by Ezekiel (1941, p. 51). The points are grouped accord- 
a scatterplot, (xi,yi), i = 1, . . . , n, in which the fitted value at  xk ing to xi, and for each group the mean of the yi is plotted 
is the value of a polynomial fit to the data using weighted least against the mean of the xi. More recently, Stone (1977) 
squares, where the weight for (xi,yi) is large if xi is close to xk and 
small if it is not. A robust fitting procedure is used that guards proves the consistency of a wide class of nonparametric 
against deviant points distorting the smoothed points. Visual, regression estimates under very general conditions and 
computational, and statistical issues of robust locally weighted presents a discussion and bibliography of methods tha t  
regression are discussed. Several examples, including data on lead 
intoxication, are used to illustrate the methodology. 	 have appeared in the literature. Another method, which 

appeared after Stone's review, is tha t  of Clark (1977), 
KEY WORDS : Graphics ; Scatterplots; Nonparametric regression ; who proposes a technique for smoothing scatterplots in Smoothing; Robust estimation. 

which the plot is interpolated by joining successive 
1. INTRODUCTION 	 points with straight lines and is then smoothed by con- 

Figure A shows a scatterplot of points (xi, yi), for volution with a weight function. 

i = 1, . . ., n, where n = 50. I n  Figure B the same scatter- In  the remainder of this article we shall first describe 

plot is summarized by another set of points (xi, pi), 	 the details of robust locally weighted regression. Then, 

for i = 1, . . ., n, which are plotted by joining successive 	 we shall use examples to show how the methodology can 

values by straight lines. The point (xi, pi) portrays the 	 be put to use in practice and give guidelines for choosing 

location of the distribution of the variable on the vertical certain parameters that  are needed for carrying out  the 

axis, Y, given the value of the variable on the horizontal procedure. An algorithm is given that  allows efficient 

axis, X = xi. The formation of the new points will be computation of smoothed points. Various statistical 

referred to as  smoothing the scatterplot. The point 	 topics, including the sampling distributions of fitted 

(xi, gi) is called the smoothed point a t  z; and pi is called 	 values, an estimate of the error variance, and the equiva- 

the fitted value a t  xi. The example in Figure A was 	 lent number of parameters, are presented. Finally, the 

generated by taking z i  = i, and 	 interplay between bias and variance is discussed and 
conditions are given that  ensure that  increasing a param- 
eter that  controls the amount of smoothing will decrease 

where c; is a random sample from a normal distribution the variance of the fitted values. 
with mean 0 and variance 1. The linear effect is not easily 
perceived from the scatterplot alone, but is revealed 2. LOCALLY WEIGHTED REGRESSION AND ROBUST 
when the smoothed points are superimposed. LOCALLY WEIGHTED REGRESSION 

In  this article we shall discuss a method for smoothing 
We shall first attempt to give the rough idea of the scatterplots called robust locally weighted regression. 

smoothing procedure before giving the precise details. 

Local fitting of polynomials has been used for many 

decades to smooth time series plots in which the xi are 	 Let W be a weight function with the following properties: 


equally spaced (Macauley 1931). Locally weighted re- 1. W(z) > 0 for J x  / < 1; 

gression is an extension of this technique to more general 2. W( -x) = W (x) ; (2.1) 

configurations of the xi. In  addition, a robust fitting 3. W(x) is a nonincreasing function for x > 0 ;  

procedure is used that  guards against deviant points 4. W(z) = 0 for 1x1 > 1. 

distorting the smoothed points. The procedure is an 

adaptation of iterated weighted least squares, a recent Let O < f and let be f n  the nearest 

technique of robust estimation ( ~ and ~~~k~~ ~ t ~ ~
integer. Roughly, the procedure is the following. For each 
1974; Andrews 1974). Thus, robust locally weighted X i ,  weights, wk (xi), are defined for all xk, = 1, . , n, 

regression is a of old ideas for smoothing using the weight function W. This is done by centering 

and new ideas for robust estimation. W a t  zi and scaling it  so that  the point a t  which W first 
becomes zero is a t  the rth nearest neighbor of zi. The 

* William S. Cleveland is Member, Technical Staff, Bell Telephone 
Laboratories, Murray Hill, NJ 07974. The author wishes to thank Journal of the American Statistical Association 

Richard A. Becker, Roberta Guarino, Colin L. Mallows, and December 1979, Volume 74, Number 368 
Christine Waternaux for many helpful suggestions. Theory and Methods Section 
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A. Scatterplot of Artificially Generated Data 

O R D I N A T E S  

M 

A B S C I S S A S  

initial fitted value, pi, a t  each xi is the fitted value of a 
dth degree polynomial fit to the data using weighted least 
squares with weights wk(xi). This procedure for com-
puting the initial fitted values is referred to as locally 
weighted regression. A different set of weights, 6i,  is now 
defined for each (xi, yi) based on the size of the residual 
yi - pi. Large residuals result in small weights and small 
residuals result in large weights. New fitted values are 
now computed as before but with wk(zi) replaced by 6i  
wk(xi). The computation of new weights and new fitted 
values is now repeated several times. The entire pro- 
cedure, including the initial computation and the itera- 
tions, is referred to as robust locally weighted regression. 

The smoothing procedure has been designed to ac-
commodate data for which 

where g is a smooth function and the ei  are random vari- 
ables with mean 0 and constant scale. Within such a 
framework, pi is an estimate of g(xi). The assumption of 
smoothness allows points in a neighborhood of (xi, yi) 
to be used in forming pi. For a weight function, W(z), 
which decreases for increasing nonnegative x, the weights 
wk(xi) decrease as the distance of zk from xi increases. 
Thus points whose abscissas are close to xi play a large 
role in the determination of Qil while points far away 
play a lesser role. Increasing f increases the neighborhood 
of influential points and therefore tends to increase the 
smoothness of the smoothed points. 

We shall now give the details of the procedures. For 
each i let hi be the distance from x, to the rth nearest 

neighbor of xi. That is, hi is the rth smallest number 
among lxi - xi 1 ,  for j = 1, . . . , n. For k = 1, . . . , n, 
let 

~ k ( ~ i )= W(hi-l(xk - xi)) . 
Locally weighted regression and robust locally weighted 
regression are defined by the following sequence of opera- 
tions : 

1. For each i compute the estimates, j j(xi),  j = 0, . . . , 
dl of the parameters in a polynomial regression of degree 
d of yk on zk,  which is fit by weighted least squares with 
weight wk(zi) for (xk, yk). Thus the jj(xi) are the values 
of pi that minimize 

The smoothed point a t  z, using locally weighted regres- 
sion of degree d is (xi, d i ) ,  where pi is the fitted value of 
the regression a t  xi. Thus 

where rk(xi) does not depend on yj, j = 1, . . ., n. We 
have used the notation " r k ( ~ i ) ~ ~  to remind us that these 
are the coefficients for the yk that arise from the 
regression. 

2. Let B be the bisquare weight function that is de- 

B. Scatterplot of Artificially Generated Data and 
Robust Smoothed Values With f = .5 
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fined by 

B(x) = (1 - x ~ ) ~ ,for 1x1 < 1 
= O ,  for 1x1 3 1  

Let 
ei = y, - pi 

be the residuals from the current fitted values. Let s be 
the median of the 1 ei 1 .  Define robustness weights by 

3. Compute new $i for each i by fitting a dth degree 
polynomial using weighted least squares with weight 
6kwk(xi) a t  (xk, yk). 

4. Repeatedly carry out steps 2 and 3 a total of t 
times. The final g iare robust locally weighted regression 
fitted values. 

For the smoothed points in Figure B, f = .5 ,  d = 1, 
t = 2, and the weight function is "tricube," 

W(x) = (1 - / x [ ~ ) ~ ,  1x1 < 1for 

= O ,  for 1x1 3 1 . 

In Figure C, f has been decreased to .2 with the result 
that the smoothed points are "rougher" than those in 
Figure B. Section 4 contains guidelines and methods for 
choosing f , dl t ,  and W in practice. 

The iterative fitting in steps 2 to 4 is carried out to 
achieve robust smoothed points in which a small frac- 
tion of outliers does not distort the results. The outliers, 
which can be thought of as arising when e i  has a long- 

C. Scatterplot of Artificially Generated Data and 
Robust Smoothed Values With f = .2 

O R D I N A T E S  

M 
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831 

D. Scatterplot of Abrasion Loss Regression Resid- 
uals, Nonrobust Smoothed Values (Connected by 
Dotted Lines), and Robust Smoothed Values (Con- 
nected by Solid Lines) 

A B R A S I O N  L O S S  R E S I D U A L  
0 

T E N S I L E  S T R E N G T H  R E S I D U A L  

tailed distribution, tend to have small robustness weights, 
8 k l  and therefore do not play a large role in the deter- 
mination of the smoothed points. The bisquare function 
is used because other investigations have shown it to 
perform well for robust estimation of location (Gross 
1976) and for robust regression (Gross 1977). 

Once the robustness weights 6 k  have been determined, 
the fitted value a t  x (not necessarily equal to some xi) 
can be computed by fitting a polynomial using the 
weights 8k wk(x). Thus the fitted values could, for ex- 
ample, be computed and plotted a t  an equally spaced 
set of points on the horizontal axis. 

The smoothed points can be plotted by joining suc-
cessive points by straight lines as in Figure B or by sym- 
bols at  the points (xi, pi). When the smoothed points 
are superimposed on the scatterplot, the' first method 
provides greater visual discrimination with the points 
of the scatterplot. But using lines raises the danger of an 
inappropriate interpolation. One possible approach is to 
use symbols initially when the data are being analyzed; 
then if a particular plot is needed for further use, such 
as presentation to others, the lines can be used if the 
initial plot indicates that linear interpolation would not 
lead to a distortion of the results. Another method is 
to plot the smoothed points separately with the same 
scales as the original scatterplot. This is particularly 
attractive for low-resolution plots such as printer plots. 

The method of summarizing the scatterplot described 
here is appropriate when Y is the response or dependent 
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variable and X is the explanatory variable. In  cases in 
which neither variable can be designated as the response, 
the scatterplot can be summarized by plotting the 
smoothed points of Y given X and the smoothed points 
of X given Y. 

The smoothed points (xi, gi) portray the location of 
the distribution of Y given X = xi. I t  is often useful to 
have, in addition, a summary of the scale. This can be 
done by plotting 1 yi - gi ( versus xi and computing and 
plotting smoothed points for this scatterplot. 

3. EXAMPLES 

3.1 Abrasion Loss Data 

The importance of the robust procedure is illustrated 
in Figure D. The data are from a linear regression 
analysis (Box et al. 1957, p. 210) that  related the abrasion 
losses of 30 rubber specimens to their hardnesses and 
tensile strengths. In Figure D the re~iduals from regres- 
sing abrasion loss on hardness are plotted against the 
residuals from regressing tensile strength on hardness. 
Superimposed on the plot are the smoothed points using 
locally weighted regression and robust locally wkighted 
regression with t = 2. In  both cases, f = - 5 , d = 1,and 
the weight function is tricube. The outlier in the lower 
left of the plot has substantially distorted the nonrobust 
smoothed points, while the robust smoothed points 
appear quite adequate. The smoothed points in this 
example show a substantial nonlinear effect; thus a 
regression model that is linear in the explanatory vari- 
ables is not appropriate. 

E. Scatterplot of Residuals Against Fitted Values 

R E S I D U A L S  

3.2 Residuals vs. Fitted Values 

I t  has long been argued that plotting residuals against 
fitted values from a regression analysis is useful for, 
among other things, detecting a dependence of the scale 
of the errors on the level of the fitted values (Daniel 
and Wood 1971; Draper and Smith 1966). Such a plot 
has been made in Figure E for artifically generated data. 
The informal visual test is to look at  the scale of the 
ordinates of the plot and determine if it is changing (e.g., 
increasing) with changing (e.g., increasing) values of the 
abscissa. The reader is invited to do this for Figure E. 

In fact, such an informal procedure is often confusing 
and too frequently misleading. For example, we might 
conclude from Figure E that the scale increases with 
increasing fitted values. In fact, the scale is constant. The 
misleading effect arises because the density of the points 
increases in going from left to right on the plot so that  the 
ranges of the residuals tend to increase. Our visual assess- 
ment of scale is heavily dominated by our perception of 
the range, which of course does not properly measure 
scale because of the changing density. 

A far better procedure for assessing the scale is to 
plot the absolute values of the residuals against the fitted 
values, superimpose smoothed points, and look for a 
consistent change. This has been done in Figure F for 
the same data plotted in Figure E. The plot correctly 
shows a constant scale since there is little change in the 
smoothed points. 

F. Scatterplot of Absolute Values of Residuals 
Against Fitted Values and Robust Smoothed Values 

A B S O L U T E  R E S I D U A L S  
LO 

F I T T E D  V A L U E S  F I T T E D  V A L U E S  
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3.3 Lead Intoxication 

Robust locally weighted regression has been used 
(Moody and Tukey 1979) in the investigation of the lead 
exposure of 158 workers in lead-smelting plants. The data 
involve two different screening methods for determining 
lead intoxication. The first is the traditional method in 
which lead levels in a blood sample are measured by 
atomic absorption spectrophotometry. The second, which 
is both newer and considerably simpler, is a hemato-
fluorameter measurement of zinc protoporphyrin (ZPP), 
an enzyme released into the blood stream as a result of 
lead intoxication. 

Figure G is a scatterplot of the blood lead versus ZPP 
level for the 158 workers. Superimposed on the plot are 
robust locally weighted regression smoothed values with 
d = 1, f = .49, the tricube weight function, and t = 2. 
The value of f was selected by using the cross-validation 
procedure described in Section 4.4. The purpose of com- 
puting the fitted values, di,is to provide a typical blood 
lead value given the value of a ZPP measurement. The 
curve has a quadraticlike behavior for ZPP in the range 
0 to 400 pg/dl and is constant for ZPP above 400 pg/dl. 

For these data we are not in a situation in which there 
is a theoretical model to explain the dependence of blood 
lead on ZPP. Such a model would require a considera- 
tion of many physiological variables and a level of 
knowledge that does not now exist. Thus a summary of 
blood lead given ZPP must be determined empirically. 
I t  is clear that a single low-order polynomial would not 

G. Scatterplot of Blood Lead Against ZPP and 
Robust Smoothed Values (Units on both axes are 
/@/dl.) 

B L O O D  L E A D  
0 

adequately describe the entire curve in Figure G. We 
could attempt, of course, to find some other parametric 
family of curves to fit the data, but this would seem to 
require more effort than the relatively simple robust 
locally weighted regression. 

4. CHOOSING d, W, t, A N D  f 

There are four items that the user must select in order 
to carry out robust locally weighted regression: d, the 
order of the polynomial that is locally fit to each point 
on the scatterplot ; W, the function used to determine the 
weights; t, the number of iterations of the robust fitting 
procedure; and f,  the parameter used to determine the 
amount of smoothing. For the first three of these items 
certain preselected choices should serve almost all situa- 
tions. Only f needs to be chosen on the basis of the 
properties of the data on the scatterplot. 

4.1 Choosing d 

Choosing d to be 1 appears to strike a good balance 
between computational ease and the need for flexibility 
to reproduce patterns in the data. The case d = 0 is the 
simplest, computationally, but in the practical situation 
an assumption of local linearity seems to serve far 
better than an assumption of local constancy because 
the tendency is to plot variables that are related to one 
another. For d = 2, however, computational considera- 
tions begin to override the need for having flexibility. 
Taking d = 1 should almost always provide adequate 
smoothed points and computational ease. 

4.2 Choosing W 

In (2.1) four requirements for W were described for 
the following reasons: (a) is necessary, of course, since 
negative weights do not make sense; (b) is required since 
there is no reason to treat points to the left of xi dif- 
ferently from those to the right; (c) is required for it 
seems unreasonable to allow a particular point to have 
less weight than one that is further from xi; (d) is re- 
quired for computational reasons that are described in 
Section 5. 

In addition it seems desirable that W(x) decrease 
smoothly to 0 as x goes from 0 to 1. Such a weight func- 
tion produces smoothed points that have a smooth 
appearance. That  is, using time series terminology, the 
smoothed points have relatively small power a t  high 
frequencies. Among the weight functions that decrease 
to 0, tricube has been chosen since, as will be discusied 
in Section 6, it enhances a chi-squared distributional 
approximation of an estimate of the error variance. 
Tricube should provide an adequate smooth in almost 
all situations. 

4.3 Choosing t 

One procedure for carrying out the robust iterations 
would be to define a convergence criterion and iterate 
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until the criterion is satisfied. This seems needlessly 
complicated. Experinlentation with a large number of 
real and artificial data  sets indicates that  two iterations 
should be adequate for almost all situations. 

4.4 	Choosing f 

As stated earlier, increasing f tends to increase the 
smoothness of the smoothed points (x,, $,). The goal in 
the choice of f is to pick a value as large as possible to 
minimize the variability in the smoothed points without 
distorting the pattern in the data. I n  situations such as 
Figures B, C, D, and F where the sole purpose of the 
smooth is just to enhance the visual perception of patterns 
in the plot, the choice of f is not so critical since the eyes 
can partially correct for a less than optimal choice of f .  
For example, in Figure C the noisy smooth with f = .2 
still provides a clear description of the increasing overall 
trend. In  such situations choosing f i n  the range .2 to .8 
should serve most purposes; in situations in which there 
is no clear idea of what is needed, taking f = .5 is a 
reasonable starting value. 

I n  situations such as Figure G, where the smoothed 
values (x,, $,) are to be used as a regression function of 
y, on x, and might be communicated without the plot, 
more care in choosing f seems warranted. In such cases 
the PRESS procedure of Allen (1974), used ordinarily 
for choosing a subset of the independent variables in a 
regression, can be tailored to robust locally weighted 
regression to choose f .  As in Section 2, the procedure be- 
gins with locally weighted regression (without the robust 
fitting) and iterates. Let $ , ( f )  be the locally weighted 
regression-fitted value of x, for a given value of f with 
y ,  not included in the computation. Then an initial value, 
fo, of f is chosen by minimizing 

Now let 6 k  be the robustness weights for the residuals 
from the locally weighted regression fit with f = fo  (as 
computed in step 2 in Section 2). Let $,(f)  be the fitted 
value a t  xi for a given value of f with y, not included in 
the computation and using the robustness weights 6 k  

(as in step 3 in Section 2). The next value of f is chosen 
by minimizing 

n 


The procedure can then be repeated several times to pro- 
duce a final value of f. For the blood-lead example de- 
scribed in Section 3.3 the successive values of f were 
fo = .48, f l  = .49, f2 = .49. 

5. C O M P U T A T I O N S  

5.1 	 Reducing the Computations 

Suppose the  xi are ordered from smallest to  largest and 
let x,(i), . . . , xb(i) be the ordered r nearest neighbors of 
xi. The values of a ( i  + 1) and b(i + 1)can be found from 

a( i )  and b(i) by using the following scheme 

1. Let A = a( i )  and B = b(i). 
2. Let d~ = xi+l - X A  and dB = X B + ~- xi+l. 
3. If d~ < d ~ ,then a ( i  + 1) = A and b(i + 1) = B. 

If d~ > d~ replace A by A + 1 and B by B + 1 and 
return to step 2. 

4. hi+l is the maximum of xi+l - X A  and X B  - xi+l. 
Thus this scheme can be used to save computations by 
computing the fitted values a t  xl, then xz, and so on. 
Only x,(i,, . . . , x*(i, need be considered in the weighted 
least squares computation of d, since W(x) = 0 for 
( x1 > 1. This saving would not be achieved by using a 
weight function that  becomes small but not zero for 
large x, such as the full normal probability density. 

Portable FORTRAN programs that  incorporate these 
savings are available from the author on request. 

5.2 	Grouping 

The computations for the nearest-neighbor algorithm 
are approximately of the order fn2. For scatterplots with 
fewer than 100 points, the computations present no 
problems. For plots with more points, computations can 
be saved simply by grouping the xi. The saving results 
from the fact tha t  if xi+l = xi then Qi+l = pi. 

6. 	E S T I M A T I O N  A N D  SAMPLING DISTRIBUTIONS 
FOR LOCALLY WEIGHTED REGRESSION 

In  this section we shall suppose, as is generally done in 
ordinary least squares regression, that  the ci  are inde- 
pendent and identically distributed. 

6.1 	 Estimation of the Error Variance and the Standard 
Errors of Fitted Values for Normal E~ 

Let us further suppose that  the e i  are normally distri- 
buted with variance u2. For such an error structure we 
would be content to smooth by locally weighted regres- 
sion and not employ the robust fitting algorithm. Thus 
we shall suppose the fitted values d i  are the result of 
step 1in Section 2. 

Let R be the matrix whose (i, k)th element is rk(x,). 
Let gi = y, - di be the residuals. The fitted values and 
residuals have multivariate normal distributions with 
covariance matrices (r2RR' and n2C, respectively, where I 
is the identity matrix and C = ( I  - R) ( I  - R)'. Let 
t ,  = trC: If we suppose the bias in the fitted values is 
negligible, then EQi = g(xi) and 

is an unbiased estimate of u2. Thus the standard error of 
?ji may be estimated by 

a2 is a quadratic form in normal variables. A standard 
procedure for approximating the distribution of such a 
quadratic form (Box 1953) is to use a constant times a 
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chi-squared distribution whose first two moments match 
those of the quadratic form. Thus 

may be approximated by a chi-squared distribution with 
degrees of freedom equal to t12t2-I rounded to the nearest 
integer. The chi-squared approximation will be enhanced 
if, in addition, we can make the third cumulants of the 
actual and the approximating distributions as close as 
possible by the proper choice of the weight function W. 
Straightforward calculations (Cleveland 1977) show that  
the tricube weight function provides such a third-
moment match. 

The quantity 

can be used to assist in judging the relative amounts of 
smoothing for different values of f .  If the Z, were the 
residuals from a linear least squares fit with q parameters, 
then X would be equal to q. Thus, for locally weighted 
regression, X can be interpreted as an equivalent number 
of parameters. 

is not necessarily an integer, as in ordinary regression, 
but it is always nonnegative. To see this note that  since 
rk(x,), for k = 1, . . ., n, result from a weighted least 
squares regression we have 

where, for fixed i, [bik] is an idempotent matrix with n 
rows and n columns. Since W has its maximum a t  0, 
wi(xi) 3 w ~ ( x , ) .Thus 

n n 


C rk2(xi) = C b i k 2 ~ k ( ~ i ) ~ i - 1(xi) 
k = l  k = l  

n 

< C bik2 
k = l  

= bii 

Thus 

and X 3 0. 
Straightforward approximations (Cleveland 1977) 

show that  for d = 1 and for the tricube weight function 
the quantity 2(1 + f-l) provides a good approximation 
of A. 

6.2 	Estimating the Standard Error of the Fitted Values 
for More Generally Distributed ei 

If we do not assume normality as in Section 6.1, then 
generally it will be wise to use the robust fitting pro- 
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cedure described in Section 2. Let uk = (yk - gk)/6s 
and let O k  = 1 if ( 8 k l  > 0 and let O k  be 0 otherwise. 
Following Huber's (1973) suggestion for estimating 
standard errors in robust regression we might t ry  esti- 
mating the standard error of ?ji by 

n 


&(Crk2(xi))' 
k = l

where 

More experimentation (e.g., Monte Carlo) with this 
estimate is needed in order to understand its properties. 

7. VARIANCE, BIAS, A N D  M E A N  SQUARED ERROR 

FOR LOCALLY WEIGHTED REGRESSION 


OF DEGREE ZERO 


Suppose the yi satisfy the model in (2.2) but with the 
additional assumption that  the e, are independent with 
common finite variance u2. Let d be the fitted value a t  x 
(not necessarily equal to an xi). The variance and bias 
of Q arc related to the mean squared error by 

E($  - = (Ed - + var d .g ( ~ ) ) ~  g ( ~ ) ) ~  

Let h be the distance of x to its r th  nearest neighbor. 
Increasing the value of h tends to decrease the contribu- 
tion of the variance term to the mean squared error, but 
runs the risk of increasing the bias. For locally weighted 
regression the variance of d, 

is generally (but not always) a nonincreasing function of 
h, since increasing h generally pools more information 
from the data.  To illustrate this the behavior of v(h) 
for the special case d = 0 will be investigated. 

We shall begin with a lemma whose proof is from 
Colin L. R4allows. (In the lemma and the theorem to 
follow all summations run from 1 to n.) 

Lemma: Let ak and b k  for k = 1, . . ., n be two se-
quences of numbers with the following properties : 

1. a k  > 0 and b k  3 0, 
2. ak, b k ,  and bk/ak are nonincreasing sequences, 
3. C ak = C bk = 1. 

Then 

Equality occurs only if ak = b k  for all k. 
Proof: 

C = akbk - C ak2 

= C ( a k+ a)((bk)/(ak) - l)ak , 
where a is any real number. Since ak + a and bk/ak - 1 
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are nonincreasing we may choose a so that  the signs of 
these two sequences match. Thus c >, 0. This inequality 
together with the Cauchy-Schwarz inequality for ak 
and bk proves the lemma. 

The following theorem gives a necessary and sufficient 
condition tha t  v(h)  be a nonincreasing function of h for 
locally weighted regression of degree 0. 

Theorem: Let 

where W is a weight function as defined in Section 2. 
(Note that  for locally weighted regression with cl = 0, 
we have rk (x )  = v k  ( h ) . )Let 

v (h )  = cr2 C vk2(h) 
and let 

C ( z )  = log W ( e Z )  

be defined for all real z such that  W ( e Z )> 0 .  Then v (h )  
is a nonincreasing function of h for any set of x ,  and any 
x if and only if C is a concave function. 

Proof: Suppose C ( z )  is concave. Let /3 > a > 0, 
ak = vk(aP') ,  and bk = v k ( p - l ) .  For simplicity of nota-
tion let us suppose ( x  - x k ( = t k  is nondecreasing in k 
so that ,  since W is nonincreasing, we have ak  and bk 
are nonincreasing. Furthermore, ak = 0 implies bk = 0, 
so that with no loss of generality we may suppose ak > 0. 

We shall now show that  the sequence bk/ak = ck is 
nonincreasing. Suppose bk = 0 for X: = s + 1,  . . . , n, 
but b, > 0. Then clearly ck is nonincreasing for X: = s, . . . , 
n. Now suppose ti = 0, for X: = 1,  . . ., r,  but t,+l > 0. 
Then 

bT+I a, - (Pi,+ 1)-Cr+l - --
C r  ar+l br W(atr+l)  

Since p > a and since W is nonincreasing we have 
C , + ~ / C ,  < 1. Thus ck is nonincreasing for k = 1, . . ., 
r+ 1. It remains to show ck is nonincreasing for I: =r+1, 
. . . , s . F o r l c = r + l ,  . . . ,  s - 1  

Ck+1 W (/3tk+l) W (fftk) 
log -= log

ck W(f l tk)  ---IW(fftk+l) 

= [C(z4>- C(z3)] - [ C ( ~ Z )- ~ ( z I ) ], 

Furthermore let 

a ,  = TV(axk)(C W(ax , ) ) - '  
and 

bk = W ( x k ) ( C  W ( x j ) ) - l  . 
For thc smoothed value a t  x ,  

.(a-l) = C a," 
and 

Since log b2 - log bl = C ( z Z )- C ( z l )and log a2 - log al  
= C ( z ; )  - C ( z 2 )  we have, from (7.1),  b l /a l  > b2/a2.  
Thus, from the lemma, 

Since a-I < 1 we have proved necessity 
For the tricube weight function 

C ( z )  = 3 log ( 1  - e 3 ~ )  

for - < z < 0, and 

which is negative. Thus C is concave and v(h)  is a 
nonincreasing function of h for tricube. 

[Received Afarch 1978. Revised April 1979.1 
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