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C FIND WIMUM ENTRY 
C 

6o PIvcr = ,xC 
KK = 0 
DO 70 I = II, s 
K = INDEX(I) 
IF (ABS(LU(IC, IIl .LE. PIVOT) GOTO 70 
PIVOT = ABS(W(K, IIM 
KK I 

70 CONTIlUE 
IF (IE *EQ. 0) GOTO 10 

C 
c SWITCH ORDER 
C 

ISAVE = INDEX(ltK) 
INDMEX(KiC) = INDEX('II 
INDEX(II) = ISAVE 

C 
C PUT IN COUJimS or LU ONE AT A TIME 
C 

IF (INTIA IIBASE(II) IR 
IF (II *EQ. MN GOTO 90 
J = II + 1 
ix) 80 I = it M 
K = INDEXVI) 
LU(E, II) = W(E, II / LU(ISAVE, II) 

80 CONTINUE 
90 CCNTINUE 

EKE = IRCW 
RETURN 
END 
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DESCRIPTION AND PURPOSE 

The K-means clustering algorithm is described in detail by Hartigan (1975). An efficient 
version of the algorithm is presented here. 

The aim of the K-means algorithm is to divide M points in N dimensions into K clusters 
so that the within-cluster sum of squares is minimized. It is not practical to require that the 
solution has minimal sum of squares against all partitions, except when M, N are small and 
K = 2. We seek instead "local" optima, solutions such that no movement of a point from one 
cluster to another will reduce the within-cluster sum of squares. 

METHOD 

The algorithm requires as input a matrix of M points in N dimensions and a matrix of 
K initial cluster centres in N dimensions. The number of points in cluster L is denoted by 
NC(L). D(I, L) is the Euclidean distance between point I and cluster L. The general procedure 
is to search for a K-partition with locally optimal within-cluster sum of squares by moving 
points from one cluster to another. 
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Step 1. For each point I (I = 1, 2, ..., M), find its closest and second closest cluster centres, 
IC1(I) and IC2(I) respectively. Assign point I to cluster ICI(I). 

Step 2. Update the cluster centres to be the averages of points contained within them. 
Step 3. Initially, all clusters belong to the live set. 
Step 4. This is the optimal-transfer (OPTRA) stage: 

Consider each point I (I = 1, 2, ..., M) in turn. If cluster L (L = 1, 2, ..., K) is updated in the 
last quick-transfer (QTRAN) stage, then it belongs to the live set throughout this stage. 
Otherwise, at each step, it is not in the live set if it has not been updated in the last M optimal- 
transfer steps. Let point I be in cluster LI. If LI is in the live set, do Step 4a; otherwise, 
do Step 4b. 

Step 4a. Compute the minimum of the quantity, R2 = [NC(L) * D(I, L)2]/[NC(L) + 1], over 
all clusters L (L LI, L= 1,2, ..., K). Let L2 be the cluster with the smallest R2. If this 
value is greater than or equal to [NC(L1) * D(I, Ll)2]/[NC(Ll) - 1], no reallocation is necessary 
and L2 is the new IC2(I). (Note that the value [NC(L1) * D(I,LI)2]/[NC(Ll) - 1] is remembered 
and will remain the same for point I until cluster LI is updated.) Otherwise, point I is allocated 
to cluster L2 and LI is the new IC2(I). Cluster centres are updated to be the means of points 
assigned to them if reallocation has taken place. The two clusters that are involved in the 
transfer of point I at this particular step are now in the live set. 

Step 4b. This step is the same as Step 4a, except that the minimum R2 is computed only 
over clusters in the live set. 

Step 5. Stop if the live set is empty. Otherwise, go to Step 6 after one pass through the 
data set. 

Step 6. This is the quick-transfer (QTRAN) stage: 
Consider each point I (1 = 1, 2, ..., M) in turn. Let LI = IC1(I) and L2 = IC2(I). It is not 
necessary to check the point I if both the clusters LI and L2 have not changed in the last M 
steps. Compute the values 

RI = [NC(L1) * D(I,L1)2]/[NC(L1)- 1] and R2 = [NC(L2) * D(I,L2)2]/[NC(L2)+ 11. 

(As noted earlier, RI is remembered and will remain the same until cluster LI is updated.) 
If RI is less than R2, point I remains in cluster L1. Otherwise, switch ICl (I) and IC2(I) and 
update the centres of clusters LI and L2. The two clusters are also noted for their involvement 
in a transfer at this step. 

Step 7. If no transfer took place in the last M steps, go to Step 4. Otherwise, go to Step 6. 

STRUCTURE 
SUBROUTINE KMNS (A, M, N, C, K, ICI, IC2, NC, AN1, AN2, NCP, D, ITRAN, LIVE, 
ITER, WSS, IFAULT) 

Formal parameters 
A Real array (M, N) input: the data matrix 
M Integer input: the number of points 
N Integer input: the number of dimensions 
C Real array (K, N) input: the matrix of initial cluster centres 

output: the matrix of final cluster centres 
K Integer input: the number of clusters 
IC1 Integer array (M) output: the cluster each point belongs to 
IC2 Integer array (M) workspace: this array is used to remember the cluster which 

each point is most likely to be transferred to at 
each step 

NC Integer array (K) output: the number of points in each cluster 
AN1 Real array (K) workspace: 
AN2 Real array (K) workspace: 
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NCP Integer array (K) workspace: 
D Real array (M) workspace: 
ITRAN Integer array (K) workspace: 
LIVE Integer array (K) workspace: 
ITE R Integer input: the maximum number of iterations allowed 
WSS Real array (K) output: the within-cluster sum of squares of each cluster 
IEA ULT Integer output: see Fault Diagnostics below 

FAULT DIAGNOSTICS 
IFA ULT -0 No fault 
IFA ULT 1 At least one cluster is empty after the initial assignment. (A better set of initial 

cluster centres is called for) 
IFA ULT = 2 The allowed maximum number of iterations is exceeded 
IFA ULT = 3 K is less than or equal to 1 or greater than or equal to M 

Auxiliary algorithms 
The following auxiliary algorithms are called: SUBROUTINE OPTRA (A, M, N, C, K, 

IC1, IC2, NC, AN1, AN2, NCP, D, ITRAN, LIVE, INDEX) and SUBROUTINE QTRAN 
(A, M, N, C, K, IC1, IC2, NC, AN1, AN2, NCP, D, ITRAN, INDEX) which are included. 

RELATED ALGORITHMS 

A related algorithm is AS 113 (A transfer algorithm for non-hierarchial classification) given 
by Banfield and Bassill (1977). This algorithm uses swops as well as transfers to try to overcome 
the problem of local optima; that is, for all pairs of points, a test is made whether exchanging 
the clusters to which the points belong will improve the criterion. It will be substantially more 
expensive than the present algorithm for large M. 

The present algorithm is similar to Algorithm AS 58 (Euclidean cluster analysis) given by 
Sparks (1973). Both algorithms aim at finding a K-partition of the sample, with within-cluster 
sum of squares which cannot be reduced by moving points from one cluster to the other. 
However, the implementation of Algorithm AS 58 does not satisfy this condition. At the 
stage where each point is examined in turn to see if it should be reassigned to a different 
cluster, only the closest centre is used to check for possible reallocation of the given point; 
a cluster centre other than the closest one may have the smallest value of the quantity 
{nl/(n1 + 1)} dI2, where n, is the number of points in cluster / and di is the distance from cluster I 
to the given point. Hence, in general, Algorithm AS 58 does not provide a locally optimal 
solution. 

The two algorithms are tested on various generated data sets. The time consumed on the 
IBM 370/158 and the within-cluster sum of squares of the resulting K-partitions are given in 
Table 1. While comparing the entries of the table, note that AS 58 does not give locally 
optimal solutions and so should be expected to take less time. The WSS are different for the 
two algorithms because they arrive at different partitions of the sets of points. A saving of 
about 50 per cent in time occurs in KMNS due to using "live" sets and due to using a quick- 
transfer stage which reduces the number of optimal transfer iterations by a factor of 4. Thus, 
KMNS compared to AS 58 is locally optimal and takes less time, especially when the number 
of clusters is large. 

TIME AND AccupAcY 
The time is approximately equal to CMNKI where I is the number of iterations. For an 

IBM 370/158, C = 21 x 10-5 sec. However, different data structures require quite different 
numbers of iterations; and a careful selection of initial cluster centres will also lead to a 
considerable saving in time. 

Storage requirement: M(N+ 3) + K(N+ 7). 
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TABLE 1 

Time (sec) WSS 

1. M = 1000, N = 10, K = 10 AS 58 63-86 7056-71 
(random spherical normal) KMNS 36-66 7065-59 

2. M = 1000, N = 10, K = 10 AS 58 4349 7779*70 
(two widely separated random normals) KMNS 19 11 7822-01 

3. M = 1000, N = 10, K = 50 AS 58 135-71 4543-82 
(random spherical normal) KMNS 76-00 4561 48 

4. M = 1000, N = 10, K = 50 AS 58 95-51 5131P04 
(two widely separated random normals) KMNS 57-96 5096-23 

5. M = 50, N = 2, K = 8 AS 58 0-17 21-03 
(two widely separated random normals) KMNS 0-18 21V03 

Missing variate values cannot be handled by this algorithm. 
The algorithm produces a clustering which is only locally optimal; the within-cluster sum 

of squares may not be decreased by transferring a point from one cluster to another, but 
different partitions may have the same or smaller within cluster sum of squares. 

The number of iterations required to attain local optimality is usually less than 10. 

ADDITIONAL COMMENTS 
One way of obtaining the initial cluster centres is suggested here. The points are 

first ordered by their distances to the overall mean of the sample. Then, for cluster 
L (L = 1,2, ..., K), the {1 + (L -1) * [M/K]}th point is chosen to be its initial cluster centre. 
In effect, some K sample points are chosen as the initial cluster centres. Using this initialization 
process, it is guaranteed that no cluster will be empty after the initial assignment in the 
subroutine. A quick initialization, which is dependent on the input order of the points, takes 
the first K points as the initial centres. 
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SUBROUTINE KIRTS(A, M, N, C, K, ICI, ICZ, NC, ANI, AN2, NCP, 
* D, ITRAN, LIVE, ITER, WSS, IFAULT) 

C 
C ALGORITHM AS 136 APPL. STATIST. (1979) VOL.28, NO.1 
c 
C DIVIDE M POINTS IN N-DIMENSIONAL SPACE INTO K CWSTERS 
C SO THIAT THE WITHIN CUJSTER SUM OF SQUARES IS MINIMIZED. 
C 

DIMENSION A(M, N, ICI(Ml, IC2(M), D(Ml 
DIMENSION C(K, N), NC(K), AN1(K), AN2(K), NCP(K) 
DIMENSION ITRAN(K), LIVE(K), WSStK), DT(2) 

C 
C DEFINE BIG TO BE A VERY LARGE POSITIVE NUMBER 
C 

DATA BIG /1,0E1O/ 
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IFAULT = 3 
IF (I LE. 1 OR, K GE, M) RETURN 

C 
C FOR EACH POITr I, FIND ITS TWO CLOSEST CENTRES, 
C IC1(I) AND IC2(I). ASSIGN IT TO IC1(I). 
C 

DO 50 I = 1, M 
ICl(I) = 1 
IC2(I) = 2 
DO 10 IL-- 1, 2 
DT(IL) = 0.0 
DO 10 J = 1, N; 
DA = A(I, J) - C(IL, J) 
DT(IL) = DT(IL) + DA * DA 

10 COtNTINUE 
IF (I)T(1) . . T(2!)) GOTO 2o 
ICI(I) = 2 
IC2(I) = 1 
TEMP = DT(1 
DT(1) DT(2) 
DT() = TEMP 

20 DO 50 L = 3, K 
DB = 0.0 
DO 30 J = 1, NJ 
DC = A(I, J) - C(L, J) 
DB = DB + DC * DC 
IF (DO .GE. DT(2)) GOTO 50 

30 CONTINUE 
IF (DB *LT. DT(1)* GCTO 40 
DT(2) = D 
IC2(I = L 
GOTO 50 

40 DT(2) = DT(1l 
IC2(I) = ICI(I) 
DT(l) = DO 
IC1(I) = L 

50 C0NTIN4UE 
C 
C UPDATE CUISTER CENTRES TO BE TIIE AVERAGE 
C (OF POINTS CONTAINED WITHIN THEM 
C 

DO 70 L 1, K 

NC(L) = 0 
DO 6o = 1, t N 

6o C(L, J) = 0.0 
70 CONTINUE 

DO 90 I = 1, M 
L = IC(I) 
TIC(L) = NC(L) + i 
D)O So 3 = 1, 1N 

80 C(L, J) = C(L, J) + A(I, 3) 
90 CONTINTUE 

C CHIECK TO SEE IF THIERE IS ANY EMPTY CLUSTER AT THIS STAGE 
C 

IFAULT = I 
DO 100 L =1 K 
IF (NC(L *EQ. 01 RETURN 

100 CONTINUE 
IFAULT = 0 
DO 120 L = 1, IC 
AA = NC(L) 
DO 110 J 1, N 

110 C(L, J) - C(L, J) / AA 
c 
C INITIALIZE ANI, AN2, ITRiAN AND NCP 
C ANI(L) IS EQUAL TO NCML) / (NC(L) - 1) 
c AN2(L) IS EQUAL TO NC'L) / (NC(Ll + 1) 
C ITRAN(L)=l IF CLUSTER L IS UPDATED IN THE QUICiK-TRtANSFER STAGE 
C ITRAlTN'L) =0 OTHJERWISE 
C IN THE1D OPTIMALITRANSFER STAGE, NCP(L) INDICATES THE STEP AT 
C WIiICHI CLUSTER L IS LAST UPDAITED 
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C IN THE QUICK-TRANSFER STAGE, NCP(L) IS EQUAL TO THE STEP AT 
C WHICH CLUSTER L IS LAST UPDATED PLUS M 
C 

AN2(L = AA / CM + 1.0) 
AN1(L) = BIG 
IF (AA GT. 1.0) AN1(L) = M / (AA - 1.0) 
ITRAN(L) I 1 
NCP(LL = -1 

120 CONTINUE 
INDEX = 0 
DO 140 IJ _ 1, ITER 

C 
C IN TIHIS STA\GE, THERE IS ONLY ONE PASS THROUGH THI DATA. 
C EACIH POINT IS REALLOCATED, IF NECESSARY, TO TIIE CLUSTER 
C TIHAT WILLi INDUCE THE MAXIMUM REDUCTION IN WITIIIN-CLUSTER 
C SUM OF SQUARES 
C 

CALL OPTRA(A, M, N, C, K, ICI, IC2, NC, ANI, ANZ, NCP, 
* D, ITRAN, LIVE, INDEX) 

C 
C STOP IF NO] TRANSFER TOOK PLACE IN THE LAST M 
C OPTIMAL-TRANSFER STEPS 
C 

IF (INDEX E ) GOtO 150 
C 
C EAXCH POINT IS TESTED IN TURN TO SEE IF IT SHOULD BE 
C REALDOCATED TO THE CLUSTER WIIICH IT IS MOST LIKELY TO 
C BE TRANSFERRED TO (IC2(I)) FROM ITS PRESENT CLUSTER (ICI(I)). 
C LOOP THIROUGHI THE DATA UNTIL NO FURTHER CHANGE IS TO TAKE PLACE 
C 

CALL QTRAN(A, Nl, N, C, K, ICi, IC2, NC, ANI, AN2, 
* NCP, D, ITRAN, INDEX) 

C 
C IF THERE ARE ONLY TWO CLUSTERS, 
C NO NEED TO RE-ENTER OPTIMAL-TRANSFER STAGE 
C 

IF (KC EQ. 2) GOT 150 
c 
C NCP HIAS TO BE SET TO 0 BEFORE ENTERING OPTRA 
C 

DO 130 L 1, K 
130 NCP W = 0 
140 CONTIINUE 

C 
C SINCE TlE SPECIFIED NUMBER OF ITERATIONS IS EXCEEDED 
C IFAULT IS SET TO BE EQUAL TO 2. 
C TIIS MAY INDICATE UNFORESEEN LOPING 
C 

IFAULT = 2 
C 
C CUMPUTE WITHIIN CLUSTER SUM OF SQUARES FOR EACH CLUSTER 
C 

150 Do 160 L 1-, K 
WSS(L) S 0.0 
jX i6o J = 1, N 
C(L, J) 0.0 

16o CoNTINUE 
DO 170 I 1, It 
II = ICi(I) 
DO 170 J = 1, N 
C(II, J) = C(II, J) + ACI, J) 

170 CONTINUE 
DO 10 J 1, N 
DOt 130 L 1, K 

180 CML, J) = C(L, J) / FLOAT(NC(L)) 
DO 190 I = 1, M 
II = ICI(I) 
DA = A(I, J) - CCII# J) 
WSS(II) = WSS(II) + DA * DA 

190 COTlINUE 
RETURN 
END 
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SUBROUTINE OPTRA(A, M, N, C, K, ICI, IC2, NC, ANI, 
* AN2, NCP, D, ITRAN, LIVE, INDEX) 

C 
C AIM(JRITHM AS 136.1 APPL. STATIST, (1979) VOL.28, NO.1 
C 
C THIS IS THE OPTIMAL-TRANSFER STAGE 
C 
C EACII POINT IS REALWCATED, IF NECESSARY, TO THE 
C CLJSTER THlAT WILL INDUCE A MAXIMUM REDUCTION IN 
C TH}I1 WITHIN-CLUSTER SUM OF SQUlARES 
C 

DIMENSION A(M, N), IC1(M), IC2WMv, D(M) 
DIMENSION C(K, N), NC(KW, AN1(K), AN2(K), NCP(K) 
DIMENSION ITRAN(K), LIVE(K) 

C 
C DEFINE BIG TO BE A VERY IARGE POSITIVE NUMBER 
C 

DATA BIG /1.OE1O/ 
C 
C IF CLUSTER L IS UPDATED IN THE LAST QUICK-TRANSFER STAGE, 
C IT BELONGS TO THE LIVE SET TIHROGHOUT THIS STAGE. 
C OTIHE-RVISE, AT EACH STEP, IT IS NOT IN THE LIVE SET IF IT 
C HItS NUT BEEN UPDATED IN THE LAST M OPTIMAL-TRANSFER STEPS 
C 

DO 10 L = 1, K 
IF (ITRAN(L) EQ. 1) LIVE(L) - M + 1- 

10 CONTINIJE 
DO 100 I =1, m 
INDEX = INDEX, + 1 
Li = 1C1(I) 
I2 = IC2(I) 
LL = 

C 
C IF POINT I IS THE ONLY MEMBER OF CWSTER IA, NO TRANSFER 
C 

IF (NC(LI) *EQ. IN GTO 90 
C 
C IF L IHAS NUT YET BEEN UPDATED IN THIS STAGE 
C NO NE-ED TO RECOMPUTE D(I) 
C 

IF (NCP(LI) .EQ. 0) GOTO 30 
DE =. 0.0 
DO 20 J = 1, N 
DF = A(I, J - C(I=, J 
DE = DE + DF * DF 

20 CONfTINUE 
D(I) = DE * AN1(L1, 

C 
C FIND TIM CLUSTER WITH MINIMUM f2 
C 

30 BJA = 0.0 
DO 40 J = 1, N 
DB = A(I, J. - C(IR, J) 
DA = DA + M * D 

40 CONTINUE 
R2 = DA * AN2() 
Do 60 L Is K 

C 
C IF I IS GsREATER THAN OR EQUAL TO LIVE.Li), THEN tl IS 
C NUT IN TIHE LIVE SET. IF THIS IS TRUE, WE ONLY NEED TO 
C CONSIDER CUJSTERS TIAT ARE IN TIE LIVE SET FOR POSSIBLE 
C TRANSFER OF POINT I. UTHERWISE, WE NEED TO CONSIDER 
C ALL POSSIBLE CLUSTERS 
C 

IF (I .GE, LIV,E(L) AND. I .GE. LIVE(L) OR. 
* L .EQ. i OR. L ,EQ. LL) GUTO 60 
RR = NT / AN2(L) 
DC = 0.0 
DO 50 J = 1, NJ 
DD = A(I, J) - C'L, 3) 
DC = DC + DD * DD 
IF (DC .GE. RR) GA n 6o 
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50 CONTINUE3 
R2 = DC * AN2(L) 
L2 = L 

6o CoNTINUE3 
IF (R2 .LT. DIV) G(FO 70 

C 
C IF NO TRAiNSFER IS NECESSARY, 12 IS THE NE?t IC2(I) 
C 

IC2(I) = J2 
GTrO go 

C 
C UPDATE CLJSTER CENTRES, LIVE, NCP, AN1 AND AN2 
C FOR CLUSTERS L AND 12, AND) UPDAT13 IC1(I) AND IC2(I) 
C 

70 INDIX = 0 
LIVE(L1) = M + I 
LIVEL'T) = M + I 
NCP(L1) = I 
NCP(LE) = I 
ALl = NC(1) 
ALY = ALA - 1. 0 
ALE2 = C S(2) 
ALT = ALTE? + 1,0 
DO 8o0 J 1, N 
C(L1, J) = (C(L,r J) * ALI - A(I, J)) ALW 
C(L2, J) - (C(2, J) * AL9E + A(I, J)) / ALT 

80 CONTINUE) 
NC(L1) = NCC(L1 I 1 
NC(L2) = NC(1 2) + 1 
AN2 (LI) = ALW / ALL 
AN1(LIL = BIG 
IF (ALW GT. 1.0) AN(L1 = A1T / (ALW - 1.0) 
AN1(L2) = ALT / AU 
AN2(L2) = ALT / (ALT + 1,0) 
IC1(I) = 2 
IC2(I) = LI 

90 COnUE= 
IF (INDEX .EQ, MN RETURN 

100 CONITINUE 
DOI 110 L 1, 1 

C 
C ITRAN(Ll IS SET TO ZERO BEFORE ENTERING, QTRAXL 
C ALSO, LIVE(L) liAS TO BE DECREASED BY M BEFORE 
C RE-ENTERING OPTRAt 
C 

ITRAN (L) 0 
LIVE(L! - LIVE(L) - M 

110 C(ONTINUE 
RETURIN 
END 

C 
SUBROlTINE QTRAN(A, M, N, C, K, IC1, IC2, NC, AN1, 

* ANE, NCP, D, ITRAN, INDEX) 
C 
C ALORITIJUL AS 136.?. APPL. STATIST. (17q) VOL.28, NO.1 
C 
C TIIIS IS TIIE QUICK TRANiSFER STAGE. 
C IC1(IN IS TIHE CLJSTER WHIICII POINT I BELONGS TO. 
C IC2(I) IS TE CLUJSTER WHIICHI P0INT I IS MOST 
C LIKEL.Y TO BE TR.ANSFERRED TO. 
C FOR EACH POINT I, IC1(I) AND IC2(I* ARE SWITCHED, IFs 
C NECESSARY, TO REDUCE WITHIN CLUSTER SUM OF SQUARES. 
C THE CLJUSTER CENTRES ARE UPDATED AFTE1R EACH STEP 
C 

DIMENSION A(V, N), IC1(M), IC2(M), D(M) 
DIMENSIOi C(KC, N1), NC(KC), AN1(1), AN2(K), NCP(K), ITRAN(K) 

C 
C DEFINE BIG TO BE A VERY LRGlE POSITIVE NUMIIER 
C 

DATA BIG /1,OE1O/ 
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C IN THE )OPTIMAL-TRANSFER STAGE, NCP(L) INDICATES THE 
C STEP AT WHICHI CUJSTER L IS LAST UPDATED 
C IN TIHE QUICIC-TRANSFER STAGE, NCP(LN IS EQUAL TO THE 
C STEP AT WHICII CLUSTER L IS LAST UPDATED PLUS M 
C 

ICOUN = 0 
ISTEP = 0 

10 DO 70 I = 1, M 
ICWUN ICOlUN + 1 
ISTEP ISTEP + 1 
LI = IC1(I) 
L2 = ICZ(I) 

C 
C IF POINT I IS THE ONLY MEMBER OF CUJSTER Li, NO TRANSFER 
C 

IF (NC(.L1) *EQ. 1) GOTO 6 
C 
C IF IST1EP IS GREATER THIAN NCP(LA), NO NEED TO RECOMPUTE 
C DISTANCE FROM4 POINT I TO CLUSTER LI 
C NOTE THAT IF CLUSTER LI IS LAST UPDATED EXACTLY MA STEPS 
C AGO WE STILL NEED TO COMPUTE THE, DISTANCE FROM POINT I 
C TO CLUSTER LI 
C 

IF (ISTEP .GT. NCP(L1)) GOTO 30 
DA = 0.0 
DO 20 J = 1, NJ 
DB = A(I, J) - C(LX, J) 
DA = DA + DO * DO 

20 CONTIlUE 
D(I) = DA * ANl(Li) 

C 
C IF ISTEP IS GREATER THAN OR EQUAL TO BOTl NCP(Li) AND 
C NCP(12) THERE WILL BE NO TRANSFER OF POINT I AT THIS STEP 
C 

30 IF (ISTEP .GE. NCP(i) .AND. ISTEP GE. NCP(L2)) GOTo 6o 
R2 = D(I) / AN2(L2) 
DD = 0.0 
DO 40 J = 1, N 
DE = A(I, J) - C(L2, J) 
DD = DO + DE * DE 
IF (D D GE. R12) GOTr Go 

40 COtNTINUE 
C 
C UPD}ATE CLJUSTER CENTRES, NCP, NC, ITRAN, ANI AND AN2 
C FOR CLlJSTERS LA AND 12. ALSO, UPDATE IC1(I) AND IC2(I). 
C NOTE THIAT IF Al4Y UPDATING OCCURS IN THIS STAGE, 
C INDEX IS SET BACK TO 0 
C 

ICOUN 0 
INDEX 0 
ITRAN(Li) = 1 
ITRAWT(2) = 1 
NCP(L1) = ISTEP + M 
NCP(L2) = ISTEP + M 
ALi = N4C (LI) 
ALW = ALL - 1.0 
AI2 = NC(U.) 
ALT = AL2 + 1. 0 
DO 507 = 1, N 
C(LI, J) = (C(Li, J) * ALI - A'I, J.) / ALU 
C(L2, J) (C(12, J) * ALS + A(I, J)) / ALT 

50 CONTINIUE 
NC(LI) =NC(Li - 1 
NC(L2) = NC(12) + 1 

AN2(L1) = ALU( / ALi 
AN1(LU) = BIG 
IF (ATJ .GT. 1.0) AN1() = ALW / (ALW - 1.0) 
AN1(L-2) = ALT / ALI 
AN2(12) = ALT / t(ALT + 1.0) 
ICiCI) -= 2 
IC2(I) = I, 

C 
C IF NO REALUICATION TOOK PLACE IN TliE LAST M STEPS, RERN 
C 

6o IF (ICOUN .EQ. M) RETURN 
70 CONTINUE 

GOYTOl 10 
IND 
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