
Algorithm AS 136: A K-Means Clustering Algorithm
Author(s): J. A. Hartigan and M. A. Wong
Reviewed work(s):
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 28, No. 1
(1979), pp. 100-108
Published by: Blackwell Publishing for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2346830 .
Accessed: 18/01/2012 13:10

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Blackwell Publishing and Royal Statistical Society are collaborating with JSTOR to digitize, preserve and
extend access to Journal of the Royal Statistical Society. Series C (Applied Statistics).

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=black
http://www.jstor.org/action/showPublisher?publisherCode=rss
http://www.jstor.org/stable/2346830?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp

100 APPLIED STATISTICS

C FIND WIMUM ENTRY
C

6o PIvcr = ,xC
KK = 0
DO 70 I = II, s
K = INDEX(I)
IF (ABS(LU(IC, IIl .LE. PIVOT) GOTO 70
PIVOT = ABS(W(K, IIM
KK I

70 CONTIlUE
IF (IE *EQ. 0) GOTO 10

C
c SWITCH ORDER
C

ISAVE = INDEX(ltK)
INDMEX(KiC) = INDEX('II
INDEX(II) = ISAVE

C
C PUT IN COUJimS or LU ONE AT A TIME
C

IF (INTIA IIBASE(II) IR
IF (II *EQ. MN GOTO 90
J = II + 1
ix) 80 I = it M
K = INDEXVI)
LU(E, II) = W(E, II / LU(ISAVE, II)

80 CONTINUE
90 CCNTINUE

EKE = IRCW
RETURN
END

Algorithm AS 136

A K-Means Clustering Algorithm

By J. A. HARTIGAN and M. A. WONG

Yale University, New Haven, Connecticut, U.S.A.

Keywords: K-MEANS CLUSTERING ALGORITHM; TRANSFER ALGORITHM

LANGUAGE

ISO Fortran

DESCRIPTION AND PURPOSE

The K-means clustering algorithm is described in detail by Hartigan (1975). An efficient
version of the algorithm is presented here.

The aim of the K-means algorithm is to divide M points in N dimensions into K clusters
so that the within-cluster sum of squares is minimized. It is not practical to require that the
solution has minimal sum of squares against all partitions, except when M, N are small and
K = 2. We seek instead "local" optima, solutions such that no movement of a point from one
cluster to another will reduce the within-cluster sum of squares.

METHOD

The algorithm requires as input a matrix of M points in N dimensions and a matrix of
K initial cluster centres in N dimensions. The number of points in cluster L is denoted by
NC(L). D(I, L) is the Euclidean distance between point I and cluster L. The general procedure
is to search for a K-partition with locally optimal within-cluster sum of squares by moving
points from one cluster to another.

STATISTICAL ALGORITHMS 101

Step 1. For each point I (I = 1, 2, ..., M), find its closest and second closest cluster centres,
IC1(I) and IC2(I) respectively. Assign point I to cluster ICI(I).

Step 2. Update the cluster centres to be the averages of points contained within them.
Step 3. Initially, all clusters belong to the live set.
Step 4. This is the optimal-transfer (OPTRA) stage:

Consider each point I (I = 1, 2, ..., M) in turn. If cluster L (L = 1, 2, ..., K) is updated in the
last quick-transfer (QTRAN) stage, then it belongs to the live set throughout this stage.
Otherwise, at each step, it is not in the live set if it has not been updated in the last M optimal-
transfer steps. Let point I be in cluster LI. If LI is in the live set, do Step 4a; otherwise,
do Step 4b.

Step 4a. Compute the minimum of the quantity, R2 = [NC(L) * D(I, L)2]/[NC(L) + 1], over
all clusters L (L LI, L= 1,2, ..., K). Let L2 be the cluster with the smallest R2. If this
value is greater than or equal to [NC(L1) * D(I, Ll)2]/[NC(Ll) - 1], no reallocation is necessary
and L2 is the new IC2(I). (Note that the value [NC(L1) * D(I,LI)2]/[NC(Ll) - 1] is remembered
and will remain the same for point I until cluster LI is updated.) Otherwise, point I is allocated
to cluster L2 and LI is the new IC2(I). Cluster centres are updated to be the means of points
assigned to them if reallocation has taken place. The two clusters that are involved in the
transfer of point I at this particular step are now in the live set.

Step 4b. This step is the same as Step 4a, except that the minimum R2 is computed only
over clusters in the live set.

Step 5. Stop if the live set is empty. Otherwise, go to Step 6 after one pass through the
data set.

Step 6. This is the quick-transfer (QTRAN) stage:
Consider each point I (1 = 1, 2, ..., M) in turn. Let LI = IC1(I) and L2 = IC2(I). It is not
necessary to check the point I if both the clusters LI and L2 have not changed in the last M
steps. Compute the values

RI = [NC(L1) * D(I,L1)2]/[NC(L1)- 1] and R2 = [NC(L2) * D(I,L2)2]/[NC(L2)+ 11.

(As noted earlier, RI is remembered and will remain the same until cluster LI is updated.)
If RI is less than R2, point I remains in cluster L1. Otherwise, switch ICl (I) and IC2(I) and
update the centres of clusters LI and L2. The two clusters are also noted for their involvement
in a transfer at this step.

Step 7. If no transfer took place in the last M steps, go to Step 4. Otherwise, go to Step 6.

STRUCTURE
SUBROUTINE KMNS (A, M, N, C, K, ICI, IC2, NC, AN1, AN2, NCP, D, ITRAN, LIVE,
ITER, WSS, IFAULT)

Formal parameters
A Real array (M, N) input: the data matrix
M Integer input: the number of points
N Integer input: the number of dimensions
C Real array (K, N) input: the matrix of initial cluster centres

output: the matrix of final cluster centres
K Integer input: the number of clusters
IC1 Integer array (M) output: the cluster each point belongs to
IC2 Integer array (M) workspace: this array is used to remember the cluster which

each point is most likely to be transferred to at
each step

NC Integer array (K) output: the number of points in each cluster
AN1 Real array (K) workspace:
AN2 Real array (K) workspace:

102 APPLIED STATISTICS

NCP Integer array (K) workspace:
D Real array (M) workspace:
ITRAN Integer array (K) workspace:
LIVE Integer array (K) workspace:
ITE R Integer input: the maximum number of iterations allowed
WSS Real array (K) output: the within-cluster sum of squares of each cluster
IEA ULT Integer output: see Fault Diagnostics below

FAULT DIAGNOSTICS
IFA ULT -0 No fault
IFA ULT 1 At least one cluster is empty after the initial assignment. (A better set of initial

cluster centres is called for)
IFA ULT = 2 The allowed maximum number of iterations is exceeded
IFA ULT = 3 K is less than or equal to 1 or greater than or equal to M

Auxiliary algorithms
The following auxiliary algorithms are called: SUBROUTINE OPTRA (A, M, N, C, K,

IC1, IC2, NC, AN1, AN2, NCP, D, ITRAN, LIVE, INDEX) and SUBROUTINE QTRAN
(A, M, N, C, K, IC1, IC2, NC, AN1, AN2, NCP, D, ITRAN, INDEX) which are included.

RELATED ALGORITHMS

A related algorithm is AS 113 (A transfer algorithm for non-hierarchial classification) given
by Banfield and Bassill (1977). This algorithm uses swops as well as transfers to try to overcome
the problem of local optima; that is, for all pairs of points, a test is made whether exchanging
the clusters to which the points belong will improve the criterion. It will be substantially more
expensive than the present algorithm for large M.

The present algorithm is similar to Algorithm AS 58 (Euclidean cluster analysis) given by
Sparks (1973). Both algorithms aim at finding a K-partition of the sample, with within-cluster
sum of squares which cannot be reduced by moving points from one cluster to the other.
However, the implementation of Algorithm AS 58 does not satisfy this condition. At the
stage where each point is examined in turn to see if it should be reassigned to a different
cluster, only the closest centre is used to check for possible reallocation of the given point;
a cluster centre other than the closest one may have the smallest value of the quantity
{nl/(n1 + 1)} dI2, where n, is the number of points in cluster / and di is the distance from cluster I
to the given point. Hence, in general, Algorithm AS 58 does not provide a locally optimal
solution.

The two algorithms are tested on various generated data sets. The time consumed on the
IBM 370/158 and the within-cluster sum of squares of the resulting K-partitions are given in
Table 1. While comparing the entries of the table, note that AS 58 does not give locally
optimal solutions and so should be expected to take less time. The WSS are different for the
two algorithms because they arrive at different partitions of the sets of points. A saving of
about 50 per cent in time occurs in KMNS due to using "live" sets and due to using a quick-
transfer stage which reduces the number of optimal transfer iterations by a factor of 4. Thus,
KMNS compared to AS 58 is locally optimal and takes less time, especially when the number
of clusters is large.

TIME AND AccupAcY
The time is approximately equal to CMNKI where I is the number of iterations. For an

IBM 370/158, C = 21 x 10-5 sec. However, different data structures require quite different
numbers of iterations; and a careful selection of initial cluster centres will also lead to a
considerable saving in time.

Storage requirement: M(N+ 3) + K(N+ 7).

STATISTICAL ALGORITHMS 103

TABLE 1

Time (sec) WSS

1. M = 1000, N = 10, K = 10 AS 58 63-86 7056-71
(random spherical normal) KMNS 36-66 7065-59

2. M = 1000, N = 10, K = 10 AS 58 4349 7779*70
(two widely separated random normals) KMNS 19 11 7822-01

3. M = 1000, N = 10, K = 50 AS 58 135-71 4543-82
(random spherical normal) KMNS 76-00 4561 48

4. M = 1000, N = 10, K = 50 AS 58 95-51 5131P04
(two widely separated random normals) KMNS 57-96 5096-23

5. M = 50, N = 2, K = 8 AS 58 0-17 21-03
(two widely separated random normals) KMNS 0-18 21V03

Missing variate values cannot be handled by this algorithm.
The algorithm produces a clustering which is only locally optimal; the within-cluster sum

of squares may not be decreased by transferring a point from one cluster to another, but
different partitions may have the same or smaller within cluster sum of squares.

The number of iterations required to attain local optimality is usually less than 10.

ADDITIONAL COMMENTS
One way of obtaining the initial cluster centres is suggested here. The points are

first ordered by their distances to the overall mean of the sample. Then, for cluster
L (L = 1,2, ..., K), the {1 + (L -1) * [M/K]}th point is chosen to be its initial cluster centre.
In effect, some K sample points are chosen as the initial cluster centres. Using this initialization
process, it is guaranteed that no cluster will be empty after the initial assignment in the
subroutine. A quick initialization, which is dependent on the input order of the points, takes
the first K points as the initial centres.

ACKNOWLEDGEMENTS

This research is supported by National Science Foundation Grant MCS75-08374.

REFERENCES

BANFIELD, C. F. and BASSILL, L. C. (1977). Algorithm AS113. A transfer algorithm for non-hierarchical
classification. Appl. Statist., 26, 206-210.

HARTIGAN, J. A. (1975). Clustering Algorithms. New York: Wiley.
SPARKS, D. N. (1973). Algorithm AS 58. Euclidean cluster analysis. Appl. Statist., 22, 126-130.

SUBROUTINE KIRTS(A, M, N, C, K, ICI, ICZ, NC, ANI, AN2, NCP,
* D, ITRAN, LIVE, ITER, WSS, IFAULT)

C
C ALGORITHM AS 136 APPL. STATIST. (1979) VOL.28, NO.1
c
C DIVIDE M POINTS IN N-DIMENSIONAL SPACE INTO K CWSTERS
C SO THIAT THE WITHIN CUJSTER SUM OF SQUARES IS MINIMIZED.
C

DIMENSION A(M, N, ICI(Ml, IC2(M), D(Ml
DIMENSION C(K, N), NC(K), AN1(K), AN2(K), NCP(K)
DIMENSION ITRAN(K), LIVE(K), WSStK), DT(2)

C
C DEFINE BIG TO BE A VERY LARGE POSITIVE NUMBER
C

DATA BIG /1,0E1O/

104 APPLIED STATISTICS

IFAULT = 3
IF (I LE. 1 OR, K GE, M) RETURN

C
C FOR EACH POITr I, FIND ITS TWO CLOSEST CENTRES,
C IC1(I) AND IC2(I). ASSIGN IT TO IC1(I).
C

DO 50 I = 1, M
ICl(I) = 1
IC2(I) = 2
DO 10 IL-- 1, 2
DT(IL) = 0.0
DO 10 J = 1, N;
DA = A(I, J) - C(IL, J)
DT(IL) = DT(IL) + DA * DA

10 COtNTINUE
IF (I)T(1) . . T(2!)) GOTO 2o
ICI(I) = 2
IC2(I) = 1
TEMP = DT(1
DT(1) DT(2)
DT() = TEMP

20 DO 50 L = 3, K
DB = 0.0
DO 30 J = 1, NJ
DC = A(I, J) - C(L, J)
DB = DB + DC * DC
IF (DO .GE. DT(2)) GOTO 50

30 CONTINUE
IF (DB *LT. DT(1)* GCTO 40
DT(2) = D
IC2(I = L
GOTO 50

40 DT(2) = DT(1l
IC2(I) = ICI(I)
DT(l) = DO
IC1(I) = L

50 C0NTIN4UE
C
C UPDATE CUISTER CENTRES TO BE TIIE AVERAGE
C (OF POINTS CONTAINED WITHIN THEM
C

DO 70 L 1, K

NC(L) = 0
DO 6o = 1, t N

6o C(L, J) = 0.0
70 CONTINUE

DO 90 I = 1, M
L = IC(I)
TIC(L) = NC(L) + i
D)O So 3 = 1, 1N

80 C(L, J) = C(L, J) + A(I, 3)
90 CONTINTUE

C CHIECK TO SEE IF THIERE IS ANY EMPTY CLUSTER AT THIS STAGE
C

IFAULT = I
DO 100 L =1 K
IF (NC(L *EQ. 01 RETURN

100 CONTINUE
IFAULT = 0
DO 120 L = 1, IC
AA = NC(L)
DO 110 J 1, N

110 C(L, J) - C(L, J) / AA
c
C INITIALIZE ANI, AN2, ITRiAN AND NCP
C ANI(L) IS EQUAL TO NCML) / (NC(L) - 1)
c AN2(L) IS EQUAL TO NC'L) / (NC(Ll + 1)
C ITRAN(L)=l IF CLUSTER L IS UPDATED IN THE QUICiK-TRtANSFER STAGE
C ITRAlTN'L) =0 OTHJERWISE
C IN THE1D OPTIMALITRANSFER STAGE, NCP(L) INDICATES THE STEP AT
C WIiICHI CLUSTER L IS LAST UPDAITED

STATISTICAL ALGORITHMS 105

C IN THE QUICK-TRANSFER STAGE, NCP(L) IS EQUAL TO THE STEP AT
C WHICH CLUSTER L IS LAST UPDATED PLUS M
C

AN2(L = AA / CM + 1.0)
AN1(L) = BIG
IF (AA GT. 1.0) AN1(L) = M / (AA - 1.0)
ITRAN(L) I 1
NCP(LL = -1

120 CONTINUE
INDEX = 0
DO 140 IJ _ 1, ITER

C
C IN TIHIS STA\GE, THERE IS ONLY ONE PASS THROUGH THI DATA.
C EACIH POINT IS REALLOCATED, IF NECESSARY, TO TIIE CLUSTER
C TIHAT WILLi INDUCE THE MAXIMUM REDUCTION IN WITIIIN-CLUSTER
C SUM OF SQUARES
C

CALL OPTRA(A, M, N, C, K, ICI, IC2, NC, ANI, ANZ, NCP,
* D, ITRAN, LIVE, INDEX)

C
C STOP IF NO] TRANSFER TOOK PLACE IN THE LAST M
C OPTIMAL-TRANSFER STEPS
C

IF (INDEX E) GOtO 150
C
C EAXCH POINT IS TESTED IN TURN TO SEE IF IT SHOULD BE
C REALDOCATED TO THE CLUSTER WIIICH IT IS MOST LIKELY TO
C BE TRANSFERRED TO (IC2(I)) FROM ITS PRESENT CLUSTER (ICI(I)).
C LOOP THIROUGHI THE DATA UNTIL NO FURTHER CHANGE IS TO TAKE PLACE
C

CALL QTRAN(A, Nl, N, C, K, ICi, IC2, NC, ANI, AN2,
* NCP, D, ITRAN, INDEX)

C
C IF THERE ARE ONLY TWO CLUSTERS,
C NO NEED TO RE-ENTER OPTIMAL-TRANSFER STAGE
C

IF (KC EQ. 2) GOT 150
c
C NCP HIAS TO BE SET TO 0 BEFORE ENTERING OPTRA
C

DO 130 L 1, K
130 NCP W = 0
140 CONTIINUE

C
C SINCE TlE SPECIFIED NUMBER OF ITERATIONS IS EXCEEDED
C IFAULT IS SET TO BE EQUAL TO 2.
C TIIS MAY INDICATE UNFORESEEN LOPING
C

IFAULT = 2
C
C CUMPUTE WITHIIN CLUSTER SUM OF SQUARES FOR EACH CLUSTER
C

150 Do 160 L 1-, K
WSS(L) S 0.0
jX i6o J = 1, N
C(L, J) 0.0

16o CoNTINUE
DO 170 I 1, It
II = ICi(I)
DO 170 J = 1, N
C(II, J) = C(II, J) + ACI, J)

170 CONTINUE
DO 10 J 1, N
DOt 130 L 1, K

180 CML, J) = C(L, J) / FLOAT(NC(L))
DO 190 I = 1, M
II = ICI(I)
DA = A(I, J) - CCII# J)
WSS(II) = WSS(II) + DA * DA

190 COTlINUE
RETURN
END

106 APPLIED STATISTICS

SUBROUTINE OPTRA(A, M, N, C, K, ICI, IC2, NC, ANI,
* AN2, NCP, D, ITRAN, LIVE, INDEX)

C
C AIM(JRITHM AS 136.1 APPL. STATIST, (1979) VOL.28, NO.1
C
C THIS IS THE OPTIMAL-TRANSFER STAGE
C
C EACII POINT IS REALWCATED, IF NECESSARY, TO THE
C CLJSTER THlAT WILL INDUCE A MAXIMUM REDUCTION IN
C TH}I1 WITHIN-CLUSTER SUM OF SQUlARES
C

DIMENSION A(M, N), IC1(M), IC2WMv, D(M)
DIMENSION C(K, N), NC(KW, AN1(K), AN2(K), NCP(K)
DIMENSION ITRAN(K), LIVE(K)

C
C DEFINE BIG TO BE A VERY IARGE POSITIVE NUMBER
C

DATA BIG /1.OE1O/
C
C IF CLUSTER L IS UPDATED IN THE LAST QUICK-TRANSFER STAGE,
C IT BELONGS TO THE LIVE SET TIHROGHOUT THIS STAGE.
C OTIHE-RVISE, AT EACH STEP, IT IS NOT IN THE LIVE SET IF IT
C HItS NUT BEEN UPDATED IN THE LAST M OPTIMAL-TRANSFER STEPS
C

DO 10 L = 1, K
IF (ITRAN(L) EQ. 1) LIVE(L) - M + 1-

10 CONTINIJE
DO 100 I =1, m
INDEX = INDEX, + 1
Li = 1C1(I)
I2 = IC2(I)
LL =

C
C IF POINT I IS THE ONLY MEMBER OF CWSTER IA, NO TRANSFER
C

IF (NC(LI) *EQ. IN GTO 90
C
C IF L IHAS NUT YET BEEN UPDATED IN THIS STAGE
C NO NE-ED TO RECOMPUTE D(I)
C

IF (NCP(LI) .EQ. 0) GOTO 30
DE =. 0.0
DO 20 J = 1, N
DF = A(I, J - C(I=, J
DE = DE + DF * DF

20 CONfTINUE
D(I) = DE * AN1(L1,

C
C FIND TIM CLUSTER WITH MINIMUM f2
C

30 BJA = 0.0
DO 40 J = 1, N
DB = A(I, J. - C(IR, J)
DA = DA + M * D

40 CONTINUE
R2 = DA * AN2()
Do 60 L Is K

C
C IF I IS GsREATER THAN OR EQUAL TO LIVE.Li), THEN tl IS
C NUT IN TIHE LIVE SET. IF THIS IS TRUE, WE ONLY NEED TO
C CONSIDER CUJSTERS TIAT ARE IN TIE LIVE SET FOR POSSIBLE
C TRANSFER OF POINT I. UTHERWISE, WE NEED TO CONSIDER
C ALL POSSIBLE CLUSTERS
C

IF (I .GE, LIV,E(L) AND. I .GE. LIVE(L) OR.
* L .EQ. i OR. L ,EQ. LL) GUTO 60
RR = NT / AN2(L)
DC = 0.0
DO 50 J = 1, NJ
DD = A(I, J) - C'L, 3)
DC = DC + DD * DD
IF (DC .GE. RR) GA n 6o

STATISTICAL ALGORITHMS 107

50 CONTINUE3
R2 = DC * AN2(L)
L2 = L

6o CoNTINUE3
IF (R2 .LT. DIV) G(FO 70

C
C IF NO TRAiNSFER IS NECESSARY, 12 IS THE NE?t IC2(I)
C

IC2(I) = J2
GTrO go

C
C UPDATE CLJSTER CENTRES, LIVE, NCP, AN1 AND AN2
C FOR CLUSTERS L AND 12, AND) UPDAT13 IC1(I) AND IC2(I)
C

70 INDIX = 0
LIVE(L1) = M + I
LIVEL'T) = M + I
NCP(L1) = I
NCP(LE) = I
ALl = NC(1)
ALY = ALA - 1. 0
ALE2 = C S(2)
ALT = ALTE? + 1,0
DO 8o0 J 1, N
C(L1, J) = (C(L,r J) * ALI - A(I, J)) ALW
C(L2, J) - (C(2, J) * AL9E + A(I, J)) / ALT

80 CONTINUE)
NC(L1) = NCC(L1 I 1
NC(L2) = NC(1 2) + 1
AN2 (LI) = ALW / ALL
AN1(LIL = BIG
IF (ALW GT. 1.0) AN(L1 = A1T / (ALW - 1.0)
AN1(L2) = ALT / AU
AN2(L2) = ALT / (ALT + 1,0)
IC1(I) = 2
IC2(I) = LI

90 COnUE=
IF (INDEX .EQ, MN RETURN

100 CONITINUE
DOI 110 L 1, 1

C
C ITRAN(Ll IS SET TO ZERO BEFORE ENTERING, QTRAXL
C ALSO, LIVE(L) liAS TO BE DECREASED BY M BEFORE
C RE-ENTERING OPTRAt
C

ITRAN (L) 0
LIVE(L! - LIVE(L) - M

110 C(ONTINUE
RETURIN
END

C
SUBROlTINE QTRAN(A, M, N, C, K, IC1, IC2, NC, AN1,

* ANE, NCP, D, ITRAN, INDEX)
C
C ALORITIJUL AS 136.?. APPL. STATIST. (17q) VOL.28, NO.1
C
C TIIIS IS TIIE QUICK TRANiSFER STAGE.
C IC1(IN IS TIHE CLJSTER WHIICII POINT I BELONGS TO.
C IC2(I) IS TE CLUJSTER WHIICHI P0INT I IS MOST
C LIKEL.Y TO BE TR.ANSFERRED TO.
C FOR EACH POINT I, IC1(I) AND IC2(I* ARE SWITCHED, IFs
C NECESSARY, TO REDUCE WITHIN CLUSTER SUM OF SQUARES.
C THE CLJUSTER CENTRES ARE UPDATED AFTE1R EACH STEP
C

DIMENSION A(V, N), IC1(M), IC2(M), D(M)
DIMENSIOi C(KC, N1), NC(KC), AN1(1), AN2(K), NCP(K), ITRAN(K)

C
C DEFINE BIG TO BE A VERY LRGlE POSITIVE NUMIIER
C

DATA BIG /1,OE1O/

108 APPLIED STATISTICS
C IN THE)OPTIMAL-TRANSFER STAGE, NCP(L) INDICATES THE
C STEP AT WHICHI CUJSTER L IS LAST UPDATED
C IN TIHE QUICIC-TRANSFER STAGE, NCP(LN IS EQUAL TO THE
C STEP AT WHICII CLUSTER L IS LAST UPDATED PLUS M
C

ICOUN = 0
ISTEP = 0

10 DO 70 I = 1, M
ICWUN ICOlUN + 1
ISTEP ISTEP + 1
LI = IC1(I)
L2 = ICZ(I)

C
C IF POINT I IS THE ONLY MEMBER OF CUJSTER Li, NO TRANSFER
C

IF (NC(.L1) *EQ. 1) GOTO 6
C
C IF IST1EP IS GREATER THIAN NCP(LA), NO NEED TO RECOMPUTE
C DISTANCE FROM4 POINT I TO CLUSTER LI
C NOTE THAT IF CLUSTER LI IS LAST UPDATED EXACTLY MA STEPS
C AGO WE STILL NEED TO COMPUTE THE, DISTANCE FROM POINT I
C TO CLUSTER LI
C

IF (ISTEP .GT. NCP(L1)) GOTO 30
DA = 0.0
DO 20 J = 1, NJ
DB = A(I, J) - C(LX, J)
DA = DA + DO * DO

20 CONTIlUE
D(I) = DA * ANl(Li)

C
C IF ISTEP IS GREATER THAN OR EQUAL TO BOTl NCP(Li) AND
C NCP(12) THERE WILL BE NO TRANSFER OF POINT I AT THIS STEP
C

30 IF (ISTEP .GE. NCP(i) .AND. ISTEP GE. NCP(L2)) GOTo 6o
R2 = D(I) / AN2(L2)
DD = 0.0
DO 40 J = 1, N
DE = A(I, J) - C(L2, J)
DD = DO + DE * DE
IF (D D GE. R12) GOTr Go

40 COtNTINUE
C
C UPD}ATE CLJUSTER CENTRES, NCP, NC, ITRAN, ANI AND AN2
C FOR CLlJSTERS LA AND 12. ALSO, UPDATE IC1(I) AND IC2(I).
C NOTE THIAT IF Al4Y UPDATING OCCURS IN THIS STAGE,
C INDEX IS SET BACK TO 0
C

ICOUN 0
INDEX 0
ITRAN(Li) = 1
ITRAWT(2) = 1
NCP(L1) = ISTEP + M
NCP(L2) = ISTEP + M
ALi = N4C (LI)
ALW = ALL - 1.0
AI2 = NC(U.)
ALT = AL2 + 1. 0
DO 507 = 1, N
C(LI, J) = (C(Li, J) * ALI - A'I, J.) / ALU
C(L2, J) (C(12, J) * ALS + A(I, J)) / ALT

50 CONTINIUE
NC(LI) =NC(Li - 1
NC(L2) = NC(12) + 1

AN2(L1) = ALU(/ ALi
AN1(LU) = BIG
IF (ATJ .GT. 1.0) AN1() = ALW / (ALW - 1.0)
AN1(L-2) = ALT / ALI
AN2(12) = ALT / t(ALT + 1.0)
ICiCI) -= 2
IC2(I) = I,

C
C IF NO REALUICATION TOOK PLACE IN TliE LAST M STEPS, RERN
C

6o IF (ICOUN .EQ. M) RETURN
70 CONTINUE

GOYTOl 10
IND

	Article Contents
	p. 100
	p. 101
	p. 102
	p. 103
	p. 104
	p. 105
	p. 106
	p. 107
	p. 108

	Issue Table of Contents
	Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 28, No. 1 (1979), pp. 1-113+i-ii
	Front Matter [pp.]
	The Analysis of Transient Spectral Components with the Autoregressive Spectral Estimator [pp. 1-13]
	A Method for Mapping the Dense and Sparse Regions of a Forest Stand [pp. 14-19]
	Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm [pp. 20-28]
	The Computer Generation of Poisson Random Variables [pp. 29-35]
	Critical Values for a Sequential Test for Many Outliers [pp. 36-39]
	Least Squares Estimation for the Inverse Power Law for Accelerated Life Tests [pp. 40-46]
	A Method for the Statistical Analysis of a Changeable Independent Variable in a Batch Process [pp. 47-54]
	An Application of Discrete Kernel Methods to Forensic Odontology [pp. 55-61]
	Long-Tailed Distributions for Position Errors in Navigation [pp. 62-72]
	Miscellanea
	Corrections: The Height and Weight of Indian Children [pp. 72]

	Book Reviews
	Review of Tables of Random Times: Corrections [pp. 72]

	Miscellanea
	A Note on Multiple Time Scales in Life Testing [pp. 73-75]
	Barnard's Monte Carlo Tests: How Many Simulations? [pp. 75-77]

	Letter to the Editors [pp. 78]
	Book Reviews
	Review: untitled [pp. 79-83]
	Review: untitled [pp. 83-84]
	Review: untitled [pp. 84]
	Review: untitled [pp. 85]
	Review: untitled [pp. 85-86]
	Review: untitled [pp. 86-87]
	Review: untitled [pp. 87]
	Review: untitled [pp. 87-88]
	Review: untitled [pp. 88-89]
	Review: untitled [pp. 89]

	Statistical Algorithms
	Algorithm AS 134: The Generation of Beta Random Variables with one Parameter Greater than and One Parameter Less than 1 [pp. 90-93]
	Algorithm AS 135: Min-Max Estimates for a Linear Multiple Regression Problem [pp. 93-100]
	Algorithm AS 136: A K-Means Clustering Algorithm [pp. 100-108]
	Algorithm AS 137: Simulating Spatial Patterns: Dependent Samples from a Multivariate Density [pp. 109-112]
	Remark AS R29: Remarks on AS 110: L_p Norm Fit of a Straight Line [pp. 112-113]
	Remark AS R30: A Remark on Algorithm AS 76: An Integral Useful in Calculating Non-Central t and Bivariate Normal Probabilities [pp. 113]
	Correction: AS 76: An Integral Useful in Calculating Non-Central t and Bivariate Normal Probabilities [pp. 113]

	Back Matter [pp.]

