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 Consistency of Single Linkage for

 High-Density Clusters
 J. A. HARTIGAN*

 High-density clusters are defined on a population with
 density f in r dimensions to be the maximal connected

 sets of form {x I f(x) 2 c}. Single-linkage clustering is
 evaluated for consistency in detecting such high-density
 clusters-other standard hierarchical techniques, such
 as average and complete linkage, are hopelessly incon-

 sistent for these clusters. The asymptotic consistency of
 single linkage closely depends on the percolation problem
 of Broadbent and Hammersley-if small spheres are re-
 moved at random from a solid, at which density of spheres
 will water begin to flow through the solid? If there is a

 single critical density such that no flow takes place below
 a certain density, and flow occurs through a single con-
 nected set above that density, then single linkage is con-
 sistent in separating high-density clusters (by disjoint sin-
 gle-linkage clusters that include a positive fraction of

 sample points in the respective clusters and pass arbi-
 trarily close to all points in the respective clusters). The
 existence of a single critical point remains a conjecture.
 A weaker result is proved that shows that single-linkage
 clusters detect high-density clusters if there is a low
 enough valley separating them.

 KEY WORDS: Single linkage; High-density clusters;
 Percolation processes.

 1. HIERARCHICAL CLUSTERING

 Given a set of points 1, 2, . . . , n with pairwise dis-
 tances d(i, j), 1 c i, j ? n, single-linkage clusters are
 defined as follows: Let i andj be the closest pair of points;
 amalgamate them to form a cluster ( and define the dis-
 tance between that cluster and any point k by d(4, k)
 = min {d(i, k), d(j, k)}; repeat the process, treating 4 as
 a point and ignoring i and j. The amalgamation continues
 until all points are grouped in one large cluster. All clusters
 obtained in the course of the algorithm are single-linkage
 clusters. The first use of this technique is in Florek et al.
 (1951), although McQuitty (1957) and Sneath (1957) dis-
 covered it independently. It seems arbitrary that distance
 between clusters should be the minimum distance of pairs
 of points in the two clusters. Indeed, Sorensen (1948)
 suggests complete linkage, in which distance between
 clusters is the maximum over pairs of points, Sokal and
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 NSF Grant MCS 75-08374.

 Michener (1958) suggest average linkage, in which dis-
 tance between clusters is an average of all pairs of dis-
 tances, and Lance and Williams (1967) present a contin-
 uum of distance definitions including the above.

 Single linkage tends to "chaining," producing long
 straggly clusters that are difficult to interpret; it is re-
 garded with disfavor for this reason. Thus Kuiper and
 Fisher (1975) say that "single linkage is not appropriate
 unless one anticipates long chained clusters" and Sneath
 (1969) concedes that "complete linkage and average link-
 age will demonstrate mainly spherical clusters, while
 straggly ones can be found by single linkage." Wishart
 (1969), however, reports that single linkage failed to de-
 tect obvious straggly clusters in the Hirschsprung-Russell
 diagram, because of chaining. Lance and Williams (1967)
 "submit that nearest neighbour sorting should be re-
 garded as obsolete."

 Yet single linkage has some attractive properties: it is

 computationally simple; it is related to the minimum span-
 ning tree (MST) by Gower and Ross (1969) (the MST is
 the graph of minimum length connecting all data points;
 single-linkage clusters are the connected subgraphs ob-
 tained by successively deleting links in the MST, largest
 first); single-linkage clusters are the maximal connected

 sets if points i and j are connected whenever d(i, j) ' do,
 letting do change to get clusters at various levels of the
 hierarchy; the two largest single-linkage clusters are the
 two sets dividing the points such that the minimum dis-
 tance between the two sets is a maximum.

 In this paper, the n points are treated as a sample from
 a population with density f with respect to Lebesgue
 measure on R'. The population clusters are the maximal

 connected sets of density - fo, with different levels of
 clusters obtained by varying fo. These are called high-
 density clusters in Hartigan (1975). High-density concepts
 of clustering have been previously put forward by Car-
 michael, George, and Julius (1968), who require for clus-
 ters "(1) that there are continuous, relatively densely
 populated regions of the space, and (2) that these are
 surrounded by continuous relatively empty regions of the
 space." See also Wishart (1969), Ihm (1965), and Katz
 and Rohlf (1973).

 If our task is to identify high-density clusters, it is nec-
 essary to estimate the density f or at least to estimate
 order relationships between the density at different
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 points. The vast literature on density estimation (for ex-
 ample, Wegman 1972a,b) now becomes relevant. The
 difficulties with determining a suitably shaped kernel in
 density estimation are analogous to the difficulties of de-
 termining a suitable distance measure in clustering. Con-
 sider the "nearest neighbor" density estimate in which

 the density at a point xo is inversely proportional to the
 volume of the smallest sphere centered at xo and con-
 taining a data point. The high-density clusters corre-
 sponding to this density estimate are precisely the single-
 linkage clusters (Hartigan 1977b). It is known that kth
 nearest neighbor density estimates are consistent for the

 true population density only if k -> oo as n -- oo. The
 density estimate corresponding to single linkage is thus
 inconsistent, which may explain its tendency to excessive

 chaining. Wishart (1969), Carmichael, George, and Julius
 (1968), Jardine and Sibson (1971), and Ling (1973) suggest
 more stable extensions of single linkage that correspond,
 roughly, to kth nearest neighbor density estimation. It is
 important to notice that the inconsistency of density es-
 timation by "nearest neighbor" does not translate im-
 mediately into inconsistency of clustering. For example,
 in one dimension, if A and B are disjoint compact high-

 density clusters on the population, there exist disjoint

 compact single-linkage clusters A, and Bn such that A,
 D A, Bn D B in probability as n -. Thus single linkage
 is consistent in one dimension because the location of the
 largest interval between observations lying in the set

 [a, b] converges to the minimum of the density f in [a, b]
 when f is continuous (Hartigan 1977a).

 In this paper the consistency properties of single link-
 age in r dimensions are studied. For r - 2 it is found that
 single linkage is not consistent, in the sense that two
 disjoint compact high-density clusters in the population
 will not be detected asymptotically by two disjoint single-
 linkage clusters, which include, respectively, the sample
 points in the two population clusters. However, single
 linkage is fractionally consistent, under certain condi-

 tions, in that there will be asymptotically two disjoint
 single-linkage clusters that include, respectively, a pos-
 itive fraction of the sample points in the two population
 clusters. The method of proof uses concepts from per-
 colation processes (Broadbent and Hammersley 1957),
 reviewed recently in Smythe and Wierman (1978); single
 linkage may be studied by percolation theory because
 single-linkage clusters are the maximal connected sets
 when each sample point is replaced by a sphere of radius
 d. (Varying d gives clusters of various size.) The prob-
 ability theory given here uses cubes rather than spheres
 because the calculations are easier and the asymptotic
 results follow equally well. Behavior is first examined for
 samples from the uniform distribution on the unit cube
 and then generalized to samples from general densities.

 2. CONNECTIVITY OF SAMPLES FROM A CUBE

 A sample of size n is drawn from the unit cube in R'r.
 Each point in the sample is the center of a closed cube

 of volume pln, which will be called a box. The total vol-
 ume of all boxes is p. This sampling scheme is obtained
 from the Poisson process of Gilbert (1961) and Roberts
 and Storey (1968) by considering the behavior of the proc-
 ess in a cube. A cluster is a maximal connected set of
 boxes.

 It is mathematically elegant to consider the whole Pois-
 son process in examining questions such as the existence
 and uniqueness of infinite clusters, but for many practical
 purposes results must be obtained within a cube. Diffi-
 culties arise in specializing infinite results within a cube.
 For this reason, results have been stated asymptotically
 as n -X oo within the cube, rather than for infinite clusters
 on a Poisson process.

 Lemma 1. A box is singleton if it overlaps no other

 box. The proportion of singleton boxes approaches

 exp( - 2rp) in probability as n -- 00.
 Proof. The first box is singleton if no other point lies

 in a volume 2rpln about it, which occurs with probability
 [1 - 2rpln]n 'if the first point lies in the cube of edge
 1 - (2rpln)I/r, which occurs with limiting probability one.
 Thus the first box is singleton with limiting probability
 exp(- 2rp). The probability that the first two boxes are
 singleton converges to exp(- 2.2rp), so that the events
 that two boxes are singleton are asymptotically inde-
 pendent. When Chebyshev's inequality is used, the lim-
 iting proportion of singleton boxes converges to exp(- 2rp)
 in probability, as required.

 Note. Similar arguments show that the proportions of
 doubleton, triple, and so on, clusters of boxes converge
 to some limiting value.

 Lemma 2. If p2r < 1, the maximum diameter of a cluster
 approaches zero in probability as n -- 00.

 Proof. The points 1, 2, . .. , k form a chain of length
 k if each point lies in a cube of volume 2rpln about the
 previous point, which occurs with probability < (2rp/
 n)k- I; there are n!l(n - k)! ordered sets of k points, so
 a chain of length k exists with probability

 (n - (2rpln)k-1 ?< n(2r p)k-I (n - k).

 If a cluster exists with diameter E, there must be at
 least E/Vr(pln)llr boxes chained together in the cluster,
 since the boxes have diagonal \/r'(p/n)I/r. Thus such a
 cluster exists with probability

 n (2 r eIV(

 which approaches zero as n > X whenever p2r < 1.

 Note. A similar bound is given by Gilbert (1961) for
 random circles on the plane, and by Roberts and Storey
 (1968) for random spheres in three dimensions. A branch-
 ing process is constructed beginning at, -say, the first box;
 its descendants are any boxes overlapping it; their des-
 cendants are any boxes overlapping them, and so on. The
 expected number of descendants of each box is p2r, and
 the expected number of descendants over all generations
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 is finite if p2r < 1. Since many boxes are counted more
 than once, the expected cluster size is finite if p2r < 1.

 Lemma 3. If p > 4 log 3, there exists a "big" cluster
 with the following properties:

 I The maximum distance between a point in the cube
 and the big cluster approaches zero in probability
 as n -* 0.

 II The maximum diameter of all other clusters ap-
 proaches zero in probability as n -> 0c.

 III A sample point belongs to the big cluster with prob-
 ability exceeding ot > 0 as n -3 oo.

 IV The fraction of sample points in the big cluster ex-
 ceeds at > 0 in probability as n -- 00.

 Proof. Consider first r = 2. Partition.the square into
 Kn square "cells," where \/K- is the largest integer
 smaller than \/47/; obviously, KnpI4n -> 1 as n a-> o.
 If a sample point lies in one of the cells, the corresponding
 box covers the cell. A chain of k cells is a sequence of
 k cells such that neighboring members of the sequence
 have an edge in common. The number of chains of k cells
 beginning at a given cell c 3k- 1, since chains of length
 k may be generated (with some repetition) by adding one
 of the three adjoining cells to the end of a chain of length
 (k - 1). The probability that a particular chain of k cells
 is empty is (1 - klKn)n, so the probability that some
 chain of k cells, beginning from a certain point, is empty
 is less than 3k- 1 exp(-knIK).

 A cluster connects a point in the corner of the square
 to an edge opposite the corner, unless there is a polygonal
 line joining the edges adjacent to the corner and inter-
 secting no boxes. Such a polygonal line passes through
 a chain of empty cells connecting the adjacent edges; the
 chain begins at one of \K< cells on an adjacent edge,
 and if it begins at cell i it is at least i long. The edges are
 connected by an empty chain with probability ' Sk= 1
 3k- exp(- knIKn). This is a geometric series that con-
 verges for large n when p > 4 log 3, to (exp(p/4) - 3)- 1.
 Thus the probability of reaching from a corner to an op-
 posite edge exceeds 1 - (exp(p/4) - 3)- 1 asymptotically.

 A rectangle in the square is connected between op-
 posite edges unless there is a polygonal line between op-
 posite edges that intersects no box. Such a polygonal line
 passes through a chain of k connected cells where
 k : A\/?, beginning on one side of the rectangle. The
 probability of such a chain < N 3A I exp(- AN312/
 Kn) -> 0 as n x. Let B be the maximal connected
 set of boxes that contains the boxes connecting opposite
 sides of the square. For each E > 0, divide the square
 into I/e rectangles that are 1 by e; the connected set that
 crosses between edges of each rectangle must intersect
 the set crossing between edges of the square, so each
 such connected set is included in B. Every point in the
 rectangle is within E of some point in B, in probability as
 n -xo, which establishes property I.

 Any connected ~set of diameter e must have range
 EIV/2 in an east-west or north-south direction, say east-

 west. It crosses one of the 2V/2/E rectangles that are 1 by
 E/2V< and so intersects the "big set" B in probability.
 Thus every cluster other than the big set has diameter
 approaching zero, in probability, proving property II.

 The corner of the square is connected to an opposite
 edge with positive probability. For any sample point,
 divide the square into four rectangles with the sample
 point at the corner. The sample point is connected to an
 opposite edge of the largest of these rectangles with pos-
 itive probability, and this rectangle has opposite edges
 connected by the big set. The sample point therefore lies
 in the big set with positive probability, proving III.

 The event that the first sample point xl belongs to B is
 determined by the sample points in the neighborhood of

 xI, since x, belongs to the big set if and only if it belongs
 to a cluster of diameter E, some E > 0, in probability. The
 events that x, and x2 belong to the big set are thus asymp-
 totically independent, being determined by independent

 sample points in the neighborhood of xi and x2. It follows
 from the law of large numbers that the proportion of
 sample points belonging to the big set is asymptotically
 positive, proving IV. (This argument may be made rig-
 orous by dividing the square into cells of area E, noting
 that x, and x2 nearly always fall in different cells and that
 asymptotic behavior occurs independently in the different
 cells.) Turning now to the three-dimensional case, con-
 sider 1 + (nip)"3 planes distant (pln)113 apart; each box
 intersects exactly one of the planes in a two-dimensional
 box of area (p/n)2'3; each plane contains approximately
 n/(n/p)`3 such boxes, so the total area of all two-dimen-
 sional boxes in each plane is approximately p. It will be
 shown that a two-dimensional big set exists in each plane
 and that the big sets for different planes are connected.

 It is necessary to consider the simultaneous behavior
 of all big sets in the planes. Divide each plane into n"6
 = l/En rectangles 1 x En. A rectangle is connected be-
 tween oppositeb edges with probability -

 1 - \/Kjmexp(-km/Km + klog3)

 where m is the number of points in the plane, 4Km(p/n)213

 -->1 as n -> oo, and k 2 fk2,/E,. All rectangles in all
 planes are connected across opposite edges with proba-
 bility -

 1-_ (!il)"3n1l6V 7exp( - km/Km + k log 3)

 where m denotes the minimum number of points in a
 plane, over the 1 + (nlp)1/3 planes. It follows that m =

 p13 n2/3 O O(n"/3 log n) and that 4Kpm p/r as n .
 Thus all rectangles in all planes are connected, across
 opposite edges in probability as n -X oo.

 Now consider corresponding rectangles in neighboring
 planes; there are two big plane sets corresponding to the
 two planes, and these big sets must intersect when put
 on the same plane since they both connect opposite sides
 of the rectangle. There is a box belonging to the first big
 set and a box belonging to the second big set, which

 overlap when the two big sets are put on the same plane.
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 The distribution of a box, in the third dimension, given'
 that it lies in a plane, is uniform over an interval of length
 (pin)"/3 and independent of its location in the plane. Two
 boxes in neighboring planes, whose two-dimensional pro-
 jections overlap, overlap with probability 2. Thus two
 neighboring big sets are connected if any big sets in n'l6
 neighboring rectangles are connected, which occurs with
 probability at least 1 - 2- n6, and all neighboring big
 sets are connected with probability at least

 tn 1/3 16 1 ~~~- ny I . as no.
 Thus I is established for cubes. Also, III and IV may

 be established by considering big sets on the planes-
 given that a' sample point lies in a certain plane, it has
 positive probability of belonging to the big set for that
 plane, and a positive fraction of points in each plane
 belong to the big set in probability as n x-* o.

 To prove II, name the parallel planes H,, H2, ... and
 let Bk denote the big set generated from squares in plane

 Hk. Beginning with a box b, intersecting Hi, let bk- I, be
 the box Hk- I, connected to bo, and closest to Hk. There
 is a probability 2 p, > 0 for all n that bk- I overlaps a
 box that intersects Hk. Given bk- 1, there is a probability
 2 p2 > 0 for all n that bk- I is connected to Bk (since Bk
 intersects a prespecified point in Hk with positive limiting

 probability, independent of behavior in HI, . . . Hk- 1).
 Therefore, bI is connected to a box in Hk without be-
 longing to B,, B2, . . . , or Bk 'with probability <
 (1 -P2)k

 A cluster of length E must reach 'at least E/IV in one
 of three directions, say the direction perpendicular to the

 planes, and must cross at least kn = EI/V(pln)1/3 planes.
 Since there are n boxes to start the cluster, it exists with

 probability < n(I - p2)kn O as'n > 0, proving II.
 In r dimensions, consider (nip)l -2/r parallel planes sep-

 arated by increments of length (nlp)I'r in the remaining
 (r - 2) dimensions; each plane contains about n2/rp -2/r
 boxes of area (pln)2'r and total area p. The theorem applies
 to all planes simultaneously, and neighboring big sets (in
 each of the remaining (r - 2) dimensions), are connected
 asymptotically. The results I through II are proved as for
 r = 3.

 Conjecture. There exists a critical density Pr such that

 I For p < Pr, the maximum diameter of clusters ap-
 proaches zero asymptotically;

 II For p > Pr, the maximum diameter of all clusters
 but one, the "big" cluster, approaches zero asymp-
 totically. The big cluster contains a positive frac-
 tion of sample points asymptotically and the max-
 imum distance of a point in the cube from the big
 cluster approaches zero as n -> w.

 The existence of such a critical density has been as-
 sumed in much of the empirical work on percolation proc-
 esses. However, the existence of Pr has not been estab-
 lished even in the closely studied case of the square lattice

 (Smythe and Wierman 1978). Pike and Seager (1974) as-
 sume that if a cluster exists connecting all opposite pairs
 of faces of the cube, then Hammersley's critical density
 has been reached in which each point has a finite prob-
 ability of belonging to an infinite cluster. However, it is
 quite possible that many different clusters exist with di-
 ameters not asymptotically zero, and yet each point has
 limiting probability zero of belonging to such a cluster.
 It must also be demonstrated that many big clusters con-
 taining positive fractions of sample points cannot coexist.
 (The uniqueness of an infinite cluster has been shown by
 Harris (1960) for the square lattice.)

 In the square, the conjecture implies that for p < Pr no
 clusters cross the square, but for p > Pr a big cluster
 exists that crosses the square asymptotically; the case p
 = Pr is indeterminate-the square is crossed with prob-
 ability not asymptotically zero or one. If the conjecture
 were not true, there would be a range of p values where
 the crossing probability is asymptotically nondegenerate.
 The Pike and Seager (1974) experiment shows that for
 circles in the square, the smallest value of p for which
 both pairs of opposite edges are connected has an average
 value of 1.12 and a standard deviation of .027, when 4,000
 points are taken in the square. This suggests that the
 interval of p values where crossing is probable but not
 certain is very small; according to the conjecture it con-
 sists of a single point.

 Theorem 1. A density f is bounded away from 0 and
 X in a compact set S in R r having a connected interior
 So. A distance measure d on R r is such that 0 < a <
 d(x, y)ldo(x, y) < b < X for all x, y in R , where do is
 euclidean distance. A sample of n points is taken from
 f and each point xi is the center of a sphere {y I dr(x1, y)
 p p/n}.

 I For p large enough there is a big cluster of spheres
 that includes a positive fraction of sample points
 and passes within En of each point of So, where n

 0 in probability as n -> a:. Further, every other
 cluster has diameter less than E, where En -- 0 in
 probability as n -* oo.

 II For p small enough, every cluster has diameter less
 than En whereE, -in 0 in probability as n -- oo.

 Proof. If a big cluster exists for a distance measure d
 at density p, it will exist for do at some density po, because
 it is possible to choose the density po so that do spheres
 include d spheres. Similarly, if the maximum diameter
 of d clusters approaches zero for some p, the maximum
 diameter of do clusters approaches zero for some po. The
 same statements hold if d and do are interchanged.

 It is more difficult to show that the maximum diameter
 of other clusters converges to zero, when a big cluster
 exists for p large enough.

 Divide the cube into cubical cells of volume Apln,
 where A is chosen so that if a sample point falls in a cell,
 the corresponding d box covers the cell. Then if clusters
 (other than the big cluster) exist having diameter E, there
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 is a connected line of length E that intersects no box, and
 so there is a connected set of E/(Ap/n) lr cells that are
 empty. For p sufficiently large the probability of such a

 connected set approaches zero as n -- oo.
 Thus I and II hold for the uniform distribution over the

 cube. Obtain a sample from an arbitrary density over the
 cube by taking a uniform sample and accepting points
 with probability f(x)/sup f(x); from n points accept ap-
 proximately n/sup f(x). Choose p so that II is satisfied
 for the uniform-then II is satisfied for f at density p/sup
 f(x), since the accepted points will certainly satisfy II if
 the complete set does. Similarly, construct a sample from

 the uniform by accepting points in a sample from f with
 probability inf f/f(x); from n points accept about n inf
 f(x); choose p so that I is satisfied for the uniform; then
 a big set exists for samples from f at density p/inf f(x),
 since a big set will exist on a subset of those points. Also,
 no line of length E exists that does not touch one of the

 boxes in the uniform sample, so all other clusters have
 a diameter that approaches zero in probability as n
 00.

 For an arbitrary compact S with connected interior S0,
 choose a cube C C S0 and a cube U D S. Sample points
 with density proportional to f in S and proportional to

 one in U. For p small enough, clusters in U will be small
 asymptotically, and so necessarily clusters in S will have
 maximum diameter approaching zero in probability,

 proving II. For p large enough, there will be a big cluster
 in C and a big cluster B in U; these will intersect in
 probability as n -x oo, since all clusters other than B must
 be asymptotically small. Let Bo be the component of S
 n B that contains the big cluster in C. If any other com-
 ponent of S n B has diameter> E, since S has a connected
 interior, there exists a set of diameter> E that intersects
 no box in U; for p large enough, this event occurs with
 limiting probability zero as n -- oo. Thus all clusters in
 S other than the big cluster Bo have maximum diameter
 approaching zero in probability as n -- oo. Finally, every
 point in S distance at least E from the boundary, and
 distance at most 2 from B, must be distance at most hE
 from Bo, or else there exists a component of S n B, not
 Bo, of diameter at least 'E. Thus every point in S distance
 at least E from the boundary must be distance at most -e from Bo in probability as n -O 0. Therefore, every point
 in S is distance at most 'E from Bo in probability as n
 x*o, for every choice of e > 0, proving I.

 3. CONSISTENCY OF SINGLE LINKAGE

 A high-density cluster is a maximal connected com-
 ponent of a set of form {x I f(x)-?c}, where f is a prob-
 ability density on some space. The family T of high-den-
 sity clusters has the tree property, that A, B E T implies
 A C B, or B C A, or A nl B = +. The value of a cluster
 A is v(A) = infXA f (x). The similarity of any two sets A,
 B, s(A, B) = sups v(S) where S denotes a cluster in-
 cluding A and B.

 Theorem 2. Let f denote a density in R' such that {x I
 f (x) -e} is the union of a finite number of compact sets
 with connected interiors, each E > 0. Let A and B be
 disjoint high-density clusters included in a cluster S k
 R . Single-linkage clusters are constructed from a sample
 of size n from f, using a distance d such that a < d(x, y)l
 do(x, y) < b all x, y, where do is euclidean distance.

 I For r = 1, single linkage is fully consistent for sep-

 arating A and B-if xi, . , x , Xnis a random sample
 from f, there exists a single-linkage cluster An con-
 taining all sample points in A and a single-linkage
 cluster Bn containing all sample points in B, such
 that An and Bn are disjoint with probability ap-
 proaching 1 as n -i 0.

 II For r > 1, single linkage is not fully consistent-
 any single-linkage cluster that contains all the sam-
 ple points in A will also contain nearly all sample

 points in B, in probability as n -* oo.
 III For r > 1, single linkage is fractionally consistent:

 If s(A, B) c kv(A), s(A, B) c kv(B) for k sufficiently
 small, there exist disjoint single-linkage clusters An
 and Bn so that, in the limit, An contains a positive
 fraction of points in A, passes arbitrarily close to
 every point in A, and all other clusters in A are
 arbitrarily small; Bn behaves similarly in B; and for
 some E > 0, inf{d(x, y) I x E An,, y E Bn} > e; in
 probability as n -.

 Proof. For I, see Hartigan (1977a). The proof uses the
 known distribution of the largest interval between uni-
 form order statistics to show that for samples from a
 density f in [a, b] with unique minimum, the location of
 the largest interval between sample points converges to
 the location of the minimum of f. Thus the two largest
 single-linkage clusters are separated by the location of
 the minimum.

 For II, note that single-linkage clusters are formed by
 enclosing xi in the sphere {y I dr(x., y) p,,/n} and con-
 structing connected sets of spheres, for all values of Pn.
 From Lemma 1, there will be singletons in A if Pn is
 bounded as n -* o. If Pn is not bounded, there will be a
 big cluster reaching over S, and including nearly all points
 of S, from Theorem 1; thus any cluster that contains all
 points of A must contain nearly all points of B.

 For III, let Se = {x I x E SO, f(x) < s(A, B) + E}. From
 the definition of s(A, B) every path between A and B
 meets S,. Since {x I f(x) - s(A, B) + E} has finitely many
 components, Se is the union of a finite number of con-
 nected open sets, and on the closure of each of these
 sets, f(x) - s(A, B) + E. Note that s(A, B)/k ' v(A),
 v(B) ' f(x), x E A U B. Choose spheres of volume pln
 about the sample points; in Se the total volume of spheres
 per unit volume - [S(A, B) + E]p, and in A U B the total
 volume per unit volume ? inf[v(A), v(B)]p. Thus for k
 large enough, Theorem 1 implies that there exists p for
 which big clusters exist in A and B, but only small clusters
 in each component of Se in probability as n -*o. If A
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 and B are connected by a cluster, that cluster will meet
 Se in a point x where f(x) < s(A, B) + E/2; such a point
 is contained in a cube of edge 86 lying entirely in Se, since

 Se is open. Thus a cluster of length 28, must occur in Se,
 which occurs with probability approaching zero as n
 oo. Thus A and B are not connected by a cluster, but big
 clusters reach over each of A and B, in probability as n

 Remark. If the conjecture is true (that all clusters are

 small for p < po and a unique big cluster exists for p >
 po), then in uniform sampling from the cube, a stronger
 consistency result applies. For any two disjoint high-den-
 sity clusters A and B, there exist disjoint big single-link-

 age clusters An and Bn such that d(An, A) -O 0, d(Bn, B)
 0 in probability, where d(C, D) = supXEC inf,' d(x, y)

 + supyEc infx.Dd(x, y).

 4. INTERPRETING SINGLE-LINKAGE CLUSTERS

 How can we tell whether there are disjoint population
 clusters? We will assume a very large number of sample
 points; for n sample points there will be (n - 1) single-
 linkage clusters, but it is only of interest to examine clus-
 ters containing a positive fraction (say 5 percent) of the
 sample points, since only these may be big sets for a
 population cluster.

 If two disjoint population clusters exist, with a suffi-
 ciently deep valley separating them, asymptotically there
 will be big sets passing arbitrarily close to each point in
 the respective population clusters. Each of the big sets
 specified includes a positive fraction of the sample points
 lying in the clusters. Asymptotically, the distance be-
 tween the big sets is bounded away from zero.

 It follows that single linkage is conservative-it won't
 necessarily detect all clusters, but it will detect modes
 separated by a sufficiently deep valley. In contrast, com-
 plete and average linkage are consistently misleading
 (Hartigan 1977a)-the final clusters depend on the range
 of the data, not the density, and they do not identify
 modes.

 If the conjecture is true, a stronger result holds. Let

 A be any high-density cluster 0, let An be the largest
 single-linkage cluster consisting of sample points in A.

 Then d(An, A) -O 0 in probability. Thus all high-density
 clusters will be identified.

 A suggested test for the existence of more than one
 cluster is the second largest cluster size test; find two
 disjoint clusters such that the size of the smaller cluster
 is as large as possible. If this size is large enough, reject
 the null hypothesis of unimodality.

 5. IMPROVING SINGLE LINKAGE

 Improved estimates of clusters are obtained from im-
 proved density estimates, for which there exists a vast
 statistical literature. Much of it concerns kernel esti-
 mates, which are difficult to adapt to the task of deter-
 mining density contours. An obvious extension of single

 linkage is kth nearest neighbor, in which the density at
 a point is a decreasing function of the distance to the kth
 nearest neighbor; analogous extensions in clustering have
 been considered by Ling (1973), and Wishart (1969). To
 obtain a consistent density estimate, it is necessary to
 have k -*0 oas n -* 00.

 There is a simple operation on the minimum spanning
 tree that should give improved density estimates. (The
 minimum spanning tree is the network of minimal length
 that connects all the points; single-linkage clusters are
 the connected sets obtained by omitting all links in the
 tree exceeding a certain length.) Each link on the tree is
 replaced by the average of it and neighboring links; this
 operation is repeated several times, and clusters are com-
 puted from the remaining tree in the usual way.

 In constructing clusters as maximal connected high-
 density regions, it is necessary to have estimates of den-
 sity and also measures of connectivity; thus it is not suf-
 ficient to have only estimates of density at each sample
 point-it is necessary also to specify which sample points
 may be connected. One "kth nearest neighbor" estimate
 that provides densities and connections is as follows:
 Estimate the minimum density on the line between any
 two points x and y as a monotone function of the minimum
 distance rk such that k sample points are within rk of x
 and y, and apply single linkage to rk.

 [Received January 1979. Revised August 1980.]
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