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A Generalized Single Linkage Method for
Estimating the Cluster Tree of a Density

Werner STUETZLE and Rebecca NUGENT

The goal of clustering is to detect the presence of distinct groups in a dataset and as-
sign group labels to the observations. Nonparametric clustering is based on the premise
that the observations may be regarded as a sample from some underlying density in
feature space and that groups correspond to modes of this density. The goal then is to
find the modes and assign each observation to the domain of attraction of a mode. The
modal structure of a density is summarized by its cluster tree; modes of the density cor-
respond to leaves of the cluster tree. Estimating the cluster tree is the primary goal of
nonparametric cluster analysis. We adopt a plug-in approach to cluster tree estimation:
estimate the cluster tree of the feature density by the cluster tree of a density estimate.
For some density estimates the cluster tree can be computed exactly; for others we have
to be content with an approximation. We present a graph-based method that can approx-
imate the cluster tree of any density estimate. Density estimates tend to have spurious
modes caused by sampling variability, leading to spurious branches in the graph clus-
ter tree. We propose excess mass as a measure for the size of a branch, reflecting the
height of the corresponding peak of the density above the surrounding valley floor as
well as its spatial extent. Excess mass can be used as a guide for pruning the graph
cluster tree. We point out mathematical and algorithmic connections to single linkage
clustering and illustrate our approach on several examples. Supplemental materials for
the article, including an R package implementing generalized single linkage cluster-
ing, all datasets used in the examples, and R code producing the figures and numerical
results, are available online.

Key Words: Cluster analysis; Excess mass; Level set; Nearest-neighbor density esti-
mation; Runt test; Single linkage clustering.

1. INTRODUCTION

The goal of clustering is to identify distinct groups in a dataset and assign a group label
to each observation. We use the term “distinct groups” in the sense of Carmichael, George,
and Julius (1968): contiguous, densely populated areas of feature space, separated by con-
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398 W. STUETZLE AND R. NUGENT

Figure 1. (a)–(c) Distinct groups in the sense of Carmichael, George, and Julius; (d) groups that would not be
considered distinct.

tiguous, relatively empty regions. This definition, although quite general, admittedly is not
all-encompassing: Figure 1(a)–(c), would be regarded as showing two groups, whereas
Figure 1(d) would not.

To cast clustering as a statistical problem we regard the data X = {x1, . . . ,xn} ⊂ Rm as a
sample from some unknown probability density p(x). There are two statistical approaches
to clustering. The parametric approach (Fraley and Raftery 1998, 1999, 2006; McLachlan
and Peel 2000) is based on the assumption that each group g is represented by a density
pg(x) that is a member of some parametric family, such as the multivariate Gaussian dis-
tributions. The density p(x) then is a mixture of the group densities, and the number of
mixture components and their parameters are estimated from the data. Observations can be
labeled using Bayes’s rule.

In contrast, the nonparametric approach adopted in this article is based on the premise
that groups correspond to modes of the density p(x). The goal then is to find the modes
and assign each observation to the “domain of attraction” of a mode. Searching for modes
as a manifestation of the presence of groups was first advocated in Wishart’s (1969) article
on Mode Analysis. According to Wishart, clustering methods should be able to detect and
“resolve distinct data modes, independently of their shape and variance.”

Hartigan (1975, sec. 11; 1981) expanded on Wishart’s idea and made it more precise by
introducing the notion of high density clusters. Define the level set L(λ;p) of a density p

at level λ as the subset of the feature space for which the density exceeds λ:

L(λ;p) = {x | p(x) > λ}.
Hartigan defined the high density clusters at level λ as the connected components of
L(λ;p).

Hartigan also pointed out that the collection of high density clusters has a hierarchical
structure: for any two clusters A and B (possibly at different levels) either A ⊂ B or B ⊂ A

or A ∩ B = ∅. This hierarchical structure is summarized by the cluster tree of p. Each
node N of the tree represents a subset D(N) of the support L(0;p) of p—a high density
cluster of p—and is associated with a density level λ(N). The cluster tree is easiest to
define recursively (Stuetzle 2003). The root node represents the entire support of p and
has associated density level λ(N) = 0. To determine the descendants of a node N we find
the lowest level λd for which L(λ;p) ∩ D(N) has two or more connected components.
If there is no such λd , then p has only one mode in D(N), and N is a leaf of the tree.
Otherwise, let C1, . . . ,Ck be the connected components of L(λd;p) ∩ D(N). If k = 2
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GENERALIZED SINGLE LINKAGE METHOD 399

Figure 2. (a) Density; (b) cluster tree. The shaded area represents the excess mass of the left daughter of the
root node. The hashed area represents the size of the right daughter of the root node.

(the usual case), we create daughter nodes representing the connected components C1 and
C2, both with associated level λd , and apply the definition recursively to the daughters.
If k > 2, we create daughter nodes representing C1 and C2 ∪ · · · ∪ Ck and recurse. (Our
terminology is different from the one used by Hartigan 1975; Hartigan referred to the
connected components of all level sets as high density clusters, whereas we reserve this
term for connected components of level sets associated with the nodes of the cluster tree.)

Figure 2 shows a density and the corresponding cluster tree. It is worth noting that the
topology of the cluster tree of a density is invariant under nonsingular affine transforma-
tions of feature space; only the levels of the nodes change. In particular, the topology does
not depend on the choice of units of measurement.

We regard estimating the cluster tree as the fundamental goal of nonparametric cluster
analysis. In this article we propose a graph-based approach to cluster tree estimation which
we call generalized single linkage clustering. In Section 2 we review previously suggested
clustering methods that can be described in terms of level sets. In Section 3 we present
the basic idea of our graph-based approach, and in Section 4 we illustrate our algorithm
on a simple example. In Section 5 we describe a way of measuring the “prominence”
of modes of a density, motivating a method for pruning branches of a cluster tree likely
to correspond to spurious modes caused by sampling variability. In Section 6 we point
out mathematical and algorithmic connections between our approach and single linkage
clustering. In Section 7 we show additional examples. Section 8, with a summary and
ideas for future work, concludes the article.

2. PREVIOUS WORK

Several previously suggested clustering methods can be described in terms of level sets
and high density clusters.

Probably the earliest such method is Wishart’s (1969) one-level mode analysis. The
goal of one-level mode analysis is to find the connected components of L(λ;p) for a given
density level λ chosen by the user. The idea is to first compute a kernel density estimate
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400 W. STUETZLE AND R. NUGENT

p̂ (Silverman 1986, chap. 4) and set aside all observations with p̂(xi ) ≤ λ, that is, all
observations not in the level set L(λ; p̂). If the connected components of L(λ;p) are well
separated, then the remaining high density observations should fall into clearly separated
groups. Wishart suggested using single linkage clustering of the high density observations
to identify the groups. One-level mode analysis anticipates some of the “sharpening” ideas
later put forth by Tukey and Tukey (1981).

A reincarnation of one-level mode analysis is the DBSCAN algorithm of Ester et al.
(1996). DBSCAN consists of four steps: (a) for each data point calculate a kernel density
estimate using a spherical uniform kernel with radius r ; (b) choose a density threshold λ

and find the observations with p̂(xi ) > λ; (c) construct a graph connecting each high den-
sity observation to all other observations within distance r ; (d) define the clusters to be
the connected components of this graph. All observations not within distance r of a high
density observation are considered “noise.”

DBSCAN is closely related to Walther’s (1997) method for estimating level sets and to
the clustering method of Cuevas, Febrero, and Fraiman (2000, 2001). Walther’s level set
estimator consists of two steps: (i) compute an estimate p̂ of the underlying density p;
(ii) estimate L(λ;p) by a union of balls centered at those observations with p̂(xi ) > λ.
Estimating a level set by a union of balls centered at high density observations is also
the basic idea of Cuevas, Febrero, and Fraiman (2000, 2001). Their estimate differs from
Walther’s estimate in the way the radii of the balls are chosen. The clusters produced by
their method are the connected components of the estimated level set or, more precisely,
the corresponding subsets of the observations. (This short summary does not do justice to
the work reported by Cuevas, Febrero, and Fraiman (2000, 2001); their articles contain a
number of interesting ideas, e.g., on using the Bootstrap to more accurately estimate level
sets and assess the variability of the estimates.)

A weakness of one-level mode analysis or any method that attempts to find clusters
based on a level set for a single level λ is apparent from Figure 2. The degree of separation
between connected components of L(λ;p), and therefore of L(λ; p̂), depends critically on
the choice of the cut level λ, which is left to the user. Moreover, there might not be a single
value of λ that reveals all the modes.

Citing the difficulty in choosing a cut level, Wishart (1969) proposed hierarchical mode
analysis, which can be regarded as a heuristic for computing the cluster tree of a kernel
density estimate p̂, although it appears that Wishart did not view it thus. (The word “tree”
does not occur in the section of his article on hierarchical mode analysis.) We use the
term “heuristic” because there is no guarantee that hierarchical mode analysis will indeed
correctly compute the cluster tree of p̂ as defined previously. Wishart’s (1969) algorithm
constructs the tree by iterative merging (i.e., is an agglomerative algorithm). It is quite
complex, probably because its iterative approach is not well matched to the tree structure
it is trying to generate.

The basic weakness of one-level mode analysis was also noted by Ankerst et al. (1999)
who proposed OPTICS, an algorithm for “Ordering Points to Identify the Clustering Struc-
ture.” OPTICS generates a data structure that allows one to calculate efficiently the result
of DBSCAN for any desired density threshold λ. It also produces a graphical summary of
the cluster structure.
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GENERALIZED SINGLE LINKAGE METHOD 401

Stuetzle (2003) suggested a new method—runt pruning—for extracting clusters from
the cluster tree of the nearest-neighbor density estimate (which is isomorphic to the single
linkage dendogram) by pruning branches believed to correspond to spurious modes. For a
generalization of single linkage clustering to the kth nearest-neighbor density estimate see
Wong (1979) and Wong and Lane (1983).

Klemelae (2004, 2005) proposed tools for visualizing the level sets of density estimates
that are piecewise constant over (hyper)-rectangles, such as histograms or discretized ker-
nel estimates. Level sets and their connected components for such density estimates are
easy to obtain. Klemelae defined a “level set tree” which is different from the cluster tree
in that it has nodes at every one of the (finitely many) levels occurring as values of p̂.

3. A GRAPH-BASED APPROACH TO ESTIMATING THE
CLUSTER TREE OF A DENSITY

An obvious way of estimating the cluster tree of a density p from a sample is to first
compute a density estimate p̂ and then use the cluster tree of p̂ as an estimate for the
cluster tree of p. This plug-in approach works for histograms or binned kernel density esti-
mates (Nugent 2006). Such estimates, however, are only viable in low dimensions because
binning high-dimensional space is not practical: ten bins per variable in ten dimensions
would result in 1010 bins. For many other estimates suitable for high-dimensional data,
like Gaussian mixtures, kernel estimates, or projection pursuit estimates, computing level
sets, and therefore computing the cluster tree, seems intractable; it is not even clear how
one would represent level sets on the computer. Instead we define and solve a closely re-
lated, but much simpler graph problem.

Let p̂ij be the minimum value of the density estimate p̂ over the line segment connecting
observations xi and xj :

p̂ij = min
t∈[0,1] p̂((1 − t)xi + txj ).

Let G be the complete graph over the observations with edge weights p̂ij and vertex
weights p̂ii . Define the threshold graph G(λ) as the subgraph of G consisting of the edges
and vertices with p̂ij > λ. By construction, the vertices of G(λ) are exactly the observa-
tions in L(λ; p̂).

There is also a link between the connected components of L(λ; p̂) and the connected
components of the threshold graph G(λ): Two observations in the same connected compo-
nent of G(λ) are guaranteed to lie in the same connected component of L(λ; p̂) because
they are connected by a path in G along which p̂ij > λ. Note that the reverse is not nec-
essarily true: there might be a curve x(t) : [0,1] → Rm with x(0) = xi , x(1) = xj , and
p̂(x(t)) ≥ λ for all t ∈ [0,1], even if there is no path in the graph G with this property.
Therefore, observations in the same connected component of L(λ; p̂) may lie in differ-
ent connected components of G(λ). However, erroneous splits are rare if p̂ is smooth; we
present some evidence for this assertion in Section 7. We will altogether miss connected
components of L(λ; p̂) that do not contain any observations, but those are probably arti-
facts of the density estimate and not of interest. In any case, our real target are the level
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402 W. STUETZLE AND R. NUGENT

sets L(λ;p) of the feature density and their connected components; occasional mistakes
in identifying connected components of L(λ; p̂) are but one component of the overall esti-
mation error.

The connected components of G(λ) for different values of λ have a tree structure, just
like the connected components of L(λ; p̂). We call this tree the graph cluster tree; it is our
approximation to the cluster tree of p̂. Like the cluster tree of a density, the graph cluster
tree is easiest to define recursively. Each node N of the graph cluster tree represents a
subgraph D̃(N) of G and is associated with a density level λ(N). We refer to the vertex set
of D̃(N) as the graph high density cluster associated with N . The root node represents the
entire graph G and has associated density level λ(N) = 0. To determine the descendants of
a node N we find the lowest level λd for which G(λ) ∩ D̃(N) has two or more connected
components. If there is no such λd , then N is a leaf of the tree. Otherwise, let C1, . . . ,Ck be
the connected components of G(λ) ∩ D̃(N). If k = 2 (the usual case), we create daughter
nodes representing the connected components C1 and C2, both with associated level λd ,
and apply the definition recursively to the daughters. If k > 2, we create daughter nodes
representing C1 and C2 ∪ · · · ∪ Ck and recurse.

Remark 1: In our graph-based approach the observations play two conceptually dif-
ferent roles. First, they are used to compute the density estimate p̂. Second, they form
the vertices of the graph G. The graph is merely a tool for approximating the structure
of the level sets of p̂. Following Cuevas, Febrero, and Fraiman (2000, 2001), we could
use a different set of “test” points as the graph vertices. For example, we could generate a
large sample from p̂, which would reduce the likelihood of erroneously splitting connected
components of level sets of p̂. We would end up with cluster labels for the test points and
could then label the original observations using any classification method.

4. COMPUTING THE GRAPH CLUSTER TREE

The recursive definition of the graph cluster tree given at the end of Section 3 translates
directly into a recursive cluster tree algorithm for its computation. Note that when we apply
the splitting procedure to the subgraph D̃(N) associated with a node N , the only values
for the threshold λ we have to consider are the weights of the edges in D̃(N). However, we
can simplify the algorithm and its visualization and expose similarities to other clustering
methods (Section 6) by making use of a connection between the threshold graphs of the
graph G and of its maximal spanning tree T :

Proposition 1. Let G be an edge weighted graph and T its maximal spanning tree.
Then two vertices belong to the same connected component of G(λ) iff they belong to the
same connected component of T (λ).

Proof: Two vertices in the same connected component of T (λ) are in the same con-
nected component of G(λ) because the edges of T are a subset of the edges of G.

Now assume that vertices xi and xj are in different connected components of T (λ).
This means that the unique path in T connecting xi and xj contains at least one edge e
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GENERALIZED SINGLE LINKAGE METHOD 403

with weight ≤ λ. Removing e from T breaks T into two connected components T1 and
T2, one containing xi and the other containing xj . If xi and xj were in the same connected
component of G(λ), there would be a path in G connecting xi and xj for which all edge
weights are greater than λ. This path has to contain an edge e∗ connecting T1 and T2.
Replacing e with e∗ in T would lead to a tree with larger total edge weight, contradicting
the assumption that T was the maximal spanning tree of G. �

Proposition 1 implies that we can apply the recursive cluster tree algorithm to the max-
imal spanning tree of G instead of G itself.

We still face an operational problem: the edge weights

p̂ij = min
t∈[0,1] p̂((1 − t)xi + txj )

of G for j �= i are not known explicitly but are solutions of an optimization problem. One
way of dealing with this problem is to approximate the p̂ij using a numerical optimizer,
most simply a grid search. We used this method to generate the examples presented in the
article.

We do have a more principled but computationally more demanding approach that can
be shown to produce the correct tree. It is based on two observations: (i) to compute the
maximal spanning tree of G and the graph cluster tree we only need the order of the edge
weights of G; their exact values are not important; (ii) if the density estimate p̂ is smooth
(e.g., a kernel estimate with a smooth kernel or a Gaussian mixture estimate), then we can
obtain upper and lower bounds on the p̂ij using Taylor expansions. These bounds can be
made arbitrarily tight at the cost of additional evaluations of p̂ and its derivatives. This
approach was described by Nugent (2006). In the examples we have tried, grid search, and
exact computation produce very similar results.

We now illustrate the cluster tree algorithm on a simple two-dimensional example. Fig-
ure 3(a) shows a dataset consisting of two obvious groups, which we will refer to as the
“lump” and the “banana.” Superimposed are the isopleths of a kernel density estimate. Fig-
ure 3(b) shows the maximal spanning tree of G. The “shortest” edge, the one with lowest
edge weight p̂ij and the first one to be broken during the recursive thresholding process,
is dashed. The minimum of the density along this edge is assumed at one of the endpoints,
drawn in gray. Therefore, thresholding eliminates this edge and the endpoint, leaving us
with one connected component.

Figure 3(c) illustrates the second step of the algorithm. The second shortest edge, the
second one to be broken, is dashed; edges and vertices below the current threshold are
drawn in gray. Again, the minimum of the density along the edge is assumed at an endpoint,
and thresholding leaves us with one connected component.

The thresholding process progressively peels off edges and vertices until we reach the
stage shown in Figure 3(d), where for the first time thresholding results in two connected
components, essentially the lump and the banana, with a few low density points removed.
Applying the thresholding process to the lump does not result in any more splits—edges
and vertices are removed until we are left with an empty graph. We therefore focus on the
banana. Figure 3(e) shows the first split of the banana. There are no further splits of the
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404 W. STUETZLE AND R. NUGENT

Figure 3. (a) Dataset and isopleths of kernel density estimate; (b) maximal spanning tree of G with “shortest”
edge dashed; (c) maximal spanning tree with second shortest edge dashed; (d) first split resulting in two connected
components; (e) first split of banana; (f) second split of banana.

lower part of the banana, whereas there is one additional split of the upper part, shown in
Figure 3(f).

The graph cluster tree shown in Figure 4(a) has four leaves, corresponding to the lump
and the three fragments of the banana. In Figure 4(b) observations in the high density
clusters corresponding to the leaves of the tree are indicated by numbers; the remaining
observations (the fluff ) are drawn in gray. The numbers below the interior nodes of the tree
are their runt excess masses (Section 5).

Remark 2: The density estimate has at least one additional mode, visible in Fig-
ure 3(a) between the lump and the banana, that does not manifest itself in the cluster tree
because there are no observations in its vicinity. The valley between the two modes in the
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GENERALIZED SINGLE LINKAGE METHOD 405

Figure 4. (a) Graph cluster tree; (b) clusters corresponding to leaves of graph cluster tree. Numbers above leaves
are labels, numbers below interior nodes are runt excess masses.

upper part of the banana is shallow and not visible in Figure 3(a) due to the choice of
contour levels.

Remark 3: The maximal spanning tree edge connecting the lump and the banana
in Figure 3(d) might seem implausible. Note, however, that there are many edges of the
complete graph G with very similar edge weights crossing the density valley separating
the lump from the banana. Which of those has the largest edge weight and therefore ends
up in the maximal spanning tree depends on minor details of the density estimate and the
locations of the grid points along the edges.

Remark 4: For the data in this example we would hope to obtain a graph cluster tree
with two leaves corresponding to the lump and the banana, respectively. However, density
estimates are inherently noisy, and the occurrence of spurious modes is unavoidable. Note,
though, that the two valleys separating the three spurious modes in the banana are shallow,
and the separation between them is not nearly as clear as the separation between the lump
and the banana. This fact is not apparent from the graph cluster tree in Figure 4(a) because
the tree only indicates the levels of the valleys, not the heights of the peaks. In Section 5
we propose a measure for the “prominence” of a high density cluster incorporating both its
spatial extent and the rise of its peak (or peaks) above the valley separating it from the rest
of feature space. Given such a measure, we can then prune branches of the graph cluster
tree corresponding to clusters with low prominence.

Remark 5: As illustrated in Figure 4(b), the graph high density clusters correspond-
ing to the leaves of the graph cluster tree do not form a partition of the data. If we want a
partition, we need a way of assigning the fluff to the clusters. In keeping with the recursive
nature of the clustering process, it is natural to make this assignment recursively. Consider
Figure 3(d) where we make the first split. The graph high density clusters corresponding
to the daughters of the root node are the solid black points in the lump and the banana, re-
spectively. The gray points are fluff, and the picture suggests a way of assigning the fluff to
the graph high density clusters: Breaking the dashed edge splits the maximal spanning tree
into two subtrees, and we assign each fluff point to the high density cluster in its subtree.
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406 W. STUETZLE AND R. NUGENT

The same recipe can be applied at any stage of the algorithm. A problem with this method
is that it occasionally results in counterintuitive assignment of outliers. The minimum den-
sities along the edges in G connecting an outlier to the rest of the observations will all be
small, and which of them is the smallest will depend, for example, on the locations of the
grid points used to approximate the edge weights. An alternative, used in the examples,
is to assign the fluff using a nearest-neighbor rule. The details of fluff assignment do not
appear to make much difference in terms of performance.

5. PRUNING THE GRAPH CLUSTER TREE

There is an obvious way of measuring the prominence of a high density cluster in the
population case. Consider Figure 2 showing a density with three modes and the correspond-
ing cluster tree. Recall that each node N of the cluster tree represents a subset D(N) of the
feature space and is associated with a level λ(N). We propose to measure the prominence
of a high density cluster by its excess mass

E(N) =
∫

D(N)

(p(x) − λ(N))dx.

In Figure 2(a) the excess mass associated with the left daughter of the root node is repre-
sented by the shaded area. The concept of “excess mass” is due to Hartigan (1987); for an
approach to clustering based on excess mass see also the works of Mueller and Sawitzki
(1991) and Polonik (1995).

To find a sample analogon to E(N) observe that∫
D(N)

dx =
∫

D(N)

1

p(x)
p(x) dx

∼ 1

n

∑
i

I (xi ∈ D̃(N))
1

p(xi )
,

and therefore

E(N) ∼ Ẽ(N) = 1

n

∑
i

I (xi ∈ D̃(N))

(
1 − λ(N)

p(xi )

)
.

The estimate Ẽ(N) for E(N) may be poor if the number of observations in the corre-
sponding graph high density cluster D̃(N) is small. However, Ẽ(N) is a sensible measure
of prominence. If the estimated densities for the observations in D̃(N) are close to λ (low
elevation of the peak above the valley floor), then λ(N)/p(xi ) ≈ 1 and Ẽ(N) is small. If the
peak has a high elevation above the valley floor, on the other hand, then λ(N)/p(xi ) ≈ 0
and Ẽ(N) is large.

To prune the graph cluster tree we choose an excess mass threshold γ and remove
all nodes with excess mass Ẽ(N) < γ and their incident edges. Note that excess mass is
monotone: If node N2 is a descendant of N1, then Ẽ(N2) < Ẽ(N1). Monotonicity implies
that pruning will not result in any isolated branches or nodes. The resulting graph may no
longer be a binary tree, but it can be converted into one by splicing out internal degree 2
nodes.
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GENERALIZED SINGLE LINKAGE METHOD 407

The nodes of the graph cluster tree surviving the pruning process are those whose daugh-
ters both have excess mass > γ . Define the runt excess mass of an interior node as the
smaller of the excess masses of its two daughters. The numbers 46, 2, and 0 next to the
interior nodes of the graph cluster tree in Figure 4(a) are the runt excess masses, multiplied
by the sample size and rounded for readability. (Informally we use the term “excess mass”
for both Ẽ(N) and round(nẼ(N)). Multiplying by the sample size expresses excess mass
in units of observations.) Clearly there is only one split separating two prominent peaks of
the estimated density, namely the one represented by the root node; the remaining two split
off minor bumps. Pruning the graph cluster tree with excess mass threshold 46 results in a
tree with two leaves representing the lump and the banana, respectively.

It would be desirable to have an automatic method for determining an appropriate value
for the threshold γ . We do not yet have such a method, so the choice will have to be
subjective (see Section 7).

Remark 6: A simpler measure of “significance” of a mode is its size

S(N) =
∫

D(N)

p(x) dx

which can be estimated by

S̃(N) = 1

n

∑
i

I (xi ∈ D̃(N)).

In Figure 2(a) the size associated with the right daughter of the root node is represented by
the hashed area. Hartigan and Mohanty (1992) used size as an indicator for “significance”
in their runt test for unimodality. Like excess mass, size is monotone and can be used for
pruning the graph cluster tree. The runt sizes for the three interior nodes of the tree in
Figure 4(a) are 96, 26, and 5. So in this example, runt size does not provide as clear a guide
for pruning as runt excess mass.

6. CONNECTIONS TO SINGLE LINKAGE CLUSTERING

Single linkage and generalized single linkage clustering are connected through the
nearest-neighbor density estimate

p̂(1)(x) = 1

d1(x,X)
,

where d1(x,X) = mini d(x,xi ). Admittedly, p̂(1) barely deserves the name “density es-
timate”: it has a singularity at every observation and cannot even be normalized. On the
other hand, it does provide a sensible measure of density in the nontechnical sense of the
word: p̂(1)(x) is small if x is far away from the observations, and large if x is close.

Let G be the complete graph over the observations with edge weights

p̂
(1)
ij = min

t∈[0,1] p̂
(1)((1 − t)xi + txj )

and vertex weights p̂
(1)
ii = ∞.
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408 W. STUETZLE AND R. NUGENT

Proposition 2. The graph cluster tree of G is isomorphic to the single linkage dendo-
gram.

A proof of Proposition 2 is given in the Appendix (available online). Proposition 2
shows that generalized single linkage clustering applied to the nearest-neighbor density
estimate reduces to single linkage clustering; the name is therefore justified.

The commonly used method of extracting clusters from a single linkage dendogram is
dendogram cutting. Stated in terms of the graph cluster tree, dendogram cutting is equiva-
lent to choosing a density threshold λ∗ and removing all nodes with level λ(N) > λ∗ and
their incident edges. There are two problems with this pruning strategy. First, it tends to
result in many singletons or tiny clusters consisting of outliers, and one or a few large
clusters. This problem could be remedied by choosing a size threshold and discarding all
clusters of size smaller than the threshold. However, there is a more fundamental problem:
dendogram cutting forms the clusters based on a single level set of the nearest-neighbor
density estimate and, as Figure 2 illustrates, there may not be a single level revealing all
the groups or modes. An alternative is to apply the pruning method described in Sec-
tion 5. Note that the nearest-neighbor density estimate has a singularity at each data point
(p̂(1)(xi ) = ∞) and therefore the measure of prominence

Ẽ(N) = 1

n

∑
i

I (xi ∈ D̃(N))

(
1 − λ(N)

p(xi )

)

reduces to the fraction of observations in the graph high density cluster D̃(N), that is, to
size. Extracting clusters from a single linkage dendogram by pruning branches with small
size was proposed by Stuetzle (2003), who also provided experimental results suggesting
that pruning is vastly superior to dendogram cutting.

7. EXAMPLES

The goal of this section is to illustrate generalized single linkage clustering on some
examples and to compare it to standard hierarchical clustering methods (single linkage,
average linkage, complete linkage, and Ward’s method), and to parametric (model-based)
clustering with Gaussian mixtures (Fraley and Raftery 1998, 1999, 2006; McLachlan and
Peel 2000). (For hierarchical clustering we used the functions “hclust” and “cutree” in R
version 2.7.1 (R Development Core Team 2008). For model-based clustering we used the
function “Mclust” in the R package mclust version 3.1-5 (Fraley and Raftery 2008).)

Density estimation: Where feasible we present the results of generalized single link-
age clustering for two different density estimates: the nearest-neighbor density estimate
and a kernel density estimate with bandwidth determined by least squares cross-validation
(Silverman 1986). We refer to these two versions as GSL-NN and GSL-K, respectively. The
nearest-neighbor estimate is computationally attractive because the maximal spanning tree
of G is the Euclidean minimal spanning tree of the observations, and computing a Euclid-
ean minimal spanning tree for 10,000 points in ten dimensions only takes about a minute

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
9:

41
 2

7 
Ju

ly
 2

01
6 



GENERALIZED SINGLE LINKAGE METHOD 409

on a standard PC. We chose kernel estimates as the alternative because they are well un-
derstood and easy to implement, and least squares cross-validation offers a simple way for
automatic bandwidth selection. We use an elliptical Gaussian kernel with the same covari-
ance as the data. For some of the examples with high-dimensional feature space, kernel
density estimation is not viable because least squares cross-validation fails or the kernel is
singular. For these examples we only give results for the nearest-neighbor density estimate.

Edge weights: For a kernel density estimate the edge weights

p̂ij = min
t∈[0,1] p̂((1 − t)xi + txj )

are not available in closed form and have to be approximated. A simple approximation
method is grid search: approximate p̂ij by the minimum of p̂ over a regular grid on the
line segment connecting xi and xj . In the examples we used ten grid points.

In practice it is not necessary to calculate the edge weights for all the edges of the
complete graph: edges connecting observations with large Euclidean distance will typically
not end up in the maximal spanning tree. In the examples we only calculate the edge
weights for a sparse test graph with edges that are either in the Euclidean minimal spanning
tree of the observations or in the 20-nearest-neighbor graph. This shortcut results in a large
speedup of the edge weight calculation: Evaluating a kernel density estimate at a single
point takes work on the order O(n), and therefore computing all the edge weights is O(n3).
The shortcut reduces this to O(n2) while producing essentially the same clustering results.

Choosing an excess mass threshold for pruning: We sort the runt excess masses
for the interior nodes of the graph cluster tree in decreasing order. Typically there is a
small number of large values followed by a long trail of small values, like 98, 32, 22, 4,
3, 3, 3, 2, 2, 1, 1, . . . . A large runt excess mass indicates a split separating two prominent
modes whereas a small runt excess mass indicates separation of a spurious mode most
likely caused by variability of the density estimate. We scan the values from small to large
looking for the first clear break, in our example between 4 and 22, and then choose the
larger value as the threshold. There are three runt excess masses greater than or equal to
the threshold, leading to a pruned tree with three interior nodes and four leaves.

Leaves versus modes: There is a one-to-one correspondence between modes of p̂

and leaves of the cluster tree of p̂. As pointed out in Section 3, however, the same is not
necessarily true for the graph cluster tree. The graph cluster tree may fail to reflect modes
of p̂ whose domain of attraction does not contain any observations and, more importantly,
multiple leaves may correspond to the same mode due to spurious splits of level sets of p̂.
To get an alternative estimate for the number of modes we use numerical optimization. We
start a numerical optimizer at each of the n observations and then cluster the resulting local
optima using Ward’s clustering method, a hierarchical version of k-means clustering. De-
fine the loss associated with a partition as the sum of squared distances of the observations
from their closest cluster means. Initially, every observation is a cluster. At any stage of
the algorithm, Ward’s method merges the two clusters leading to the smallest increase in
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410 W. STUETZLE AND R. NUGENT

loss. When applying Ward’s method to the local optima there typically is a clear jump in
the loss. A jump after the ith merge indicates that the local optima fall into n − i clusters
corresponding to n − i modes.

Measuring agreement between partitions: Let P1 and P2 be two partitions of a set
of n objects. The partitions define a contingency table: let nij be the number of objects
that belong to subset i of partition P1 and to subset j of partition P2. We measure the
agreement between P1 and P2 by the adjusted Rand index (Hubert and Arabie 1985)
defined as

R =
∑

ij

(nij

2

) − ∑
i

(
ni·
2

)∑
j

(n·j
2

)
/
(
n
2

)
1
2 (

∑
i

(
ni·
2

) + ∑
j

(n·j
2

)
) − ∑

i

(
ni·
2

)∑
j

(n·j
2

)
/
(
n
2

) .

Here ni· = ∑
j nij , and n·j is defined analogously.

The adjusted Rand index has a maximum value of 1 which is achieved when the two
partitions are identical up to renumbering of the subsets. It has expected value 0 under
random assignment of the objects to the subsets of P1 and P2 that leave the marginals ni·
and n·j fixed.

7.1 NONELLIPTICAL CLUSTERS—THE BULLSEYE DATA

The data in this example consist of a two-dimensional Gaussian cloud forming the cen-
ter of the bullseye and a second group in the shape of a ring around the center. Figure 5(a)–
(f), shows the 2-partitions generated by single linkage, average linkage, complete linkage,
Ward’s method, model-based clustering, and generalized single clustering with a kernel
density estimate, respectively.

Figure 5. (a)–(f): 2-partitions found by (a) single linkage, (b) average linkage, (c) complete linkage, (d) Ward’s
method, (e) model-based clustering, (f) generalized single linkage clustering.
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GENERALIZED SINGLE LINKAGE METHOD 411

Generalized single linkage clustering is the only method that recovers the obvious group
structure. Single linkage clustering partitions the data into a cluster consisting of a single
outlier and a second cluster made up of the rest. All the other methods fail in similar ways.
This failure is not surprising, as they are all designed to find elliptical or roughly convex
clusters.

7.2 GAUSSIAN CLUSTERS—THE SIMPLEX DATA

The data in this example consist of spherical Gaussian clusters with common standard
deviation σ = 0.25, centered at the vertices of the unit simplex in seven dimensions. The
cluster sizes are 50, 60, . . . ,110. The runt sizes for the nearest-neighbor density estimate
are, in descending order, 80, 73, 60, 38, 35, 26, 14, 10, 9, 9, 8, 7, 6, 6, . . . . The gap between
14 and 26 suggests seven clusters, which is the correct number. The adjusted Rand index
is 0.83.

The runt sizes for the kernel density estimate are 118, 61, 41, 40, 38, 24, 5, 4, 3, . . . ,

and the runt excess masses (rounded) are 34, 18, 10, 10, 9, 4, 1, 1, 1, . . . , both suggesting
seven clusters. The adjusted Rand index is 0.95.

The unpruned graph cluster tree of the corresponding kernel density estimate has
210 leaves, suggesting that the density estimate has 210 modes. To obtain an alternative
estimate for the number of modes we start a numerical optimizer at each of the 560 ob-
servations and apply Ward’s method to the local optima. The loss for the first 324 merges
stays below 4 × 10−3 and then abruptly jumps to 3.8 × 10−1, suggesting that there are at
least 560 − 324 = 236 distinct local optima. We conclude that the kernel estimate indeed
has more than 200 modes.

Table 1 summarizes the performance of single linkage, average linkage, complete link-
age, Ward’s method, model-based clustering, generalized single linkage with nearest-
neighbor density estimate, and generalized single linkage with kernel density estimate.
The first row of the table contains the values of the adjusted Rand index when the methods
are asked to construct a 7-partition. The second row contains the optimal values of the in-
dex (optimized over partition size). Numbers in parentheses are standard errors obtained by
half-sampling (Shao and Tu 1995, sec. 5.2.2). All methods except single linkage perform
well, although generalized single linkage with the nearest-neighbor estimate falls off a bit.

Table 1. Comparison of single linkage, average linkage, complete linkage, Ward’s method, model-based cluster-
ing, generalized single linkage with nearest-neighbor density estimate, and generalized single linkage
with kernel density estimate for the seven-dimensional Simplex data. First row: adjusted Rand index
if methods are made to generate seven clusters; second row: adjusted Rand index for optimal partition
size; third row: optimal partition size. Numbers in parentheses are standard errors.

SL AL CL WA MC GSL-NN GSL-K

0.0 (0.02) 0.93 (0.03) 0.89 (0.04) 0.90 (0.03) 0.97 (0.01) 0.83 (0.07) 0.94 (0.09)
0.0 (0.03) 0.93 (0.03) 0.91 (0.03) 0.90 (0.03) 0.97 (0.01) 0.90 (0.06) 0.94 (0.07)
7 8 8 7 7 8 7

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
9:

41
 2

7 
Ju

ly
 2

01
6 



412 W. STUETZLE AND R. NUGENT

Figure 6. Graph cluster tree of Olive Oil data for kernel density estimate. Numbers above the leaves are labels;
numbers below the interior nodes are runt excess masses.

7.3 THE OLIVE OIL DATA

The Olive Oil data consist of measurements of eight chemical components on 572 sam-
ples of olive oil. The samples come from three different regions of Italy. The regions are
further partitioned into nine areas: areas A1–A4 belong to region R1, areas A5 and A6
belong to region R2, and areas A7–A9 belong to region R3.

We show the results for the kernel estimate. The unpruned graph cluster tree has 514
leaves. The alternative estimate for the number of modes (obtained by clustering local

optima) is 501.
The runt excess masses are 128, 86, 46, 26, 24, 24, 19, 18, 11, 9, 8, 7, 7, 6, 6, . . . ,

and the runt sizes are 129, 89, 47, 33, 25, 24, 24, 20, 11, 9, 9, 8, . . . , both suggesting
a nine-cluster solution. Figure 6 shows the (pruned) graph cluster tree. Table 2 shows a
table of area (vertical axis) against leaf code (horizontal axis). Generalized single linkage
clustering is unable to isolate area A4; area A3, which has by far the largest number of

observations, is split into two clusters (leaf codes 40 and 41); and areas A7 and A8 are
not cleanly separated. The adjusted Rand index is 0.61, reflecting the erroneous split of
area A3.

Table 2. Olive Oil data: leaf code (horizontal axis) tabulated against area (vertical axis).

4 41 40 21 22 23 15 14 6

A1 24 1 0 0 0 0 0 0 0
A2 0 1 6 49 0 0 0 0 0
A3 0 95 108 3 0 0 0 0 0
A4 5 0 10 20 0 0 0 1 0
A5 0 0 0 0 64 1 0 0 0
A6 0 0 0 0 5 28 0 0 0
A7 0 0 0 0 0 0 32 16 2
A8 0 0 0 0 0 1 0 49 0
A9 0 0 0 0 0 0 0 0 51
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GENERALIZED SINGLE LINKAGE METHOD 413

Table 3. Comparison of single linkage, average linkage, complete linkage, Ward’s method, model-based cluster-
ing, generalized single linkage with nearest-neighbor density estimate, and generalized single linkage
with kernel density estimate for the Olive Oil data. First row: adjusted Rand index if methods are made
to generate nine clusters; second row: adjusted Rand index for optimal partition size; third row: optimal
partition size. Numbers in parentheses are standard errors.

SL AL CL WA MC GSL-NN GSL-K

0.00 (0.06) 0.61 (0.07) 0.43 (0.08) 0.50 (0.05) 0.56 (0.12) 0.51 (0.05) 0.64 (0.1)
0.0 (0.1) 0.64 (0.06) 0.50 (0.07) 0.62 (0.06) 0.64 (0.07) 0.70 (0.08) 0.64 (0.11)
4 12 7 8 8 5 9

The runt sizes for the nearest-neighbor estimate are 168, 97, 59, 51, 42, 42, 33, 13, 13,

12, 11, 11, 11, 10, . . . , suggesting eight clusters. The adjusted Rand index is 0.57.

Table 3 summarizes the performance of single linkage, average linkage, complete link-

age, Ward’s method, model-based clustering, generalized single linkage with nearest-

neighbor density estimate, and generalized single linkage with kernel density estimate.

Single linkage fails, and complete linkage is inferior to the best methods. Performance of

the other methods is comparable.

7.4 THE HANDWRITTEN DIGIT DATA

The data for this example are 2000 16 × 16 gray level images of handwritten digits;

the data therefore are of dimensionality 256. (The data were previously used to evaluate

machine learning algorithms.) Least squares cross-validation failed for this dataset, and

we are reporting the results of generalized single linkage clustering only for the nearest-

neighbor density estimate. The runt sizes are 288, 283, 90, 84, 74, 47, 37, 35, 22, 21, 21, 19,

19, 18, 13, 12, 12, . . . . The gap after 35 (vaguely) suggests nine clusters. The corresponding

adjusted Rand index is 0.64.

Table 4 summarizes the performance of single linkage, average linkage, complete link-

age, Ward’s method, model-based clustering, and generalized single linkage with nearest-

neighbor density estimate. Ward’s method and generalized single linkage perform best; the

poor showing of average linkage and model-based clustering is surprising.

Table 4. Comparison of single linkage, average linkage, complete linkage, Ward’s method, model-based clus-
tering, generalized single linkage with nearest-neighbor density estimate, for the Handwritten Digit
data. First row: adjusted Rand index if methods are made to generate ten clusters; second row: adjusted
Rand index for optimal partition size; third row: optimal partition size. Numbers in parentheses are
standard errors.

SL AL CL WA MC GSL-NN

0.00 (0.00) 0.07 (0.07) 0.28 (0.07) 0.65 (0.05) 0.35 (0.03) 0.54 (0.05)
0.0 (0.00) 0.25 (0.08) 0.35 (0.06) 0.65 (0.03) 0.38 (0.04) 0.64 (0.05)
12 15 13 10 8 7
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414 W. STUETZLE AND R. NUGENT

Figure 7. Graph cluster tree of ALL data for nearest-neighbor density estimate. Numbers above the leaves are
labels; numbers below the interior nodes are runt sizes.

7.5 THE ACUTE LYMPHOBLASTIC LEUKEMIA DATA

The purpose of this example is to illustrate that generalized single linkage clustering can
be applied to very high-dimensional datasets. The Acute Lymphoblastic Leukemia (ALL)
data are oligonucleotide microarray gene expression levels of 12,558 genes for each of
360 ALL patients. Yeoh et al. (2002) divided the patients into seven diagnostic groups
corresponding to six known leukemia subtypes (T-ALL, E2A-PBX1, BCR-ABL, TEL-
AML1, MLL rearrangement, and Hyperploid>50 chromosomes), and one unknown type,
labeled OTHER. The data were taken from the Kent Ridge Bio-Medical Data Set Repos-
itory, where they have been split into training and test sets. We clustered the training set
comprising 215 patients.

We first selected the 1000 genes with the highest variance and normalized the expres-
sion profiles to have zero mean and unit variance; squared Euclidean distance between
patients then measures the correlation between the corresponding expression profiles. Ker-
nel density estimation does not make sense in this example, as the observations lie in
a 214-dimensional subspace of 1000-dimensional space. Next, we computed the graph
cluster tree for the nearest-neighbor density estimate (the single linkage dendogram). The
largest runt sizes are 36, 27, 21, 14, 8, 5, 5, . . . , suggesting five clusters. Figure 7 shows
the (pruned) graph cluster tree, and Table 5 shows a table of ALL subtype (vertical axis)
against leaf code (horizontal axis). The T-ALL, E2A-PBX1, and TEL-AML1 subtypes

Table 5. ALL data: leaf code (horizontal axis) tabulated against ALL subtype (vertical axis).

3 5 9 16 17

BCR-ABL 0 0 0 6 3
E2A-PBX1 0 18 0 0 0
Hyperdip>50 0 1 0 41 0
MLL 0 4 10 0 0
OTHERS 0 2 14 24 12
T-ALL 28 0 0 0 0
TEL-AML1 0 0 0 0 52
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GENERALIZED SINGLE LINKAGE METHOD 415

Table 6. Comparison of single linkage, average linkage, complete linkage, Ward’s method, model-based clus-
tering, generalized single linkage with nearest-neighbor density estimate, for the Acute Lymphoblastic
Leukemia data. First row: adjusted Rand index if methods are made to generate seven clusters; sec-
ond row: adjusted Rand index for optimal partition size; third row: optimal partition size. Numbers in
parentheses are standard errors.

SL AL CL WA MC GSL-NN

0.12 (0.03) 0.12 (0.09) 0.30 (0.11) 0.60 (0.08) 0.64 (0.08) 0.54 (0.07)
0.12 (0.03) 0.29 (0.16) 0.48 (0.08) 0.63 (0.07) 0.64 (0.06) 0.55 (0.05)
13 12 15 6 8 5

correspond to clusters with leaf codes 3, 4, and 23; the remaining subtypes are not iso-
lated. These results are qualitatively similar to the ones obtained by Murua, Stanberry, and
Stuetzle (2008) using Potts model clustering. The adjusted Rand index of the generalized
single linkage partition is 0.55, compared to 0.53 for Potts model clustering.

Table 6 summarizes the performance of single linkage, average linkage, complete link-
age, Ward’s method, model-based clustering, and generalized single linkage with nearest-
neighbor density estimate. Single, average, and complete linkage are not competitive.
Ward’s method, model-based clustering, and generalized single linkage show comparable
perfomance.

8. SUMMARY AND DISCUSSION

Nonparametric clustering is based on the premise that groups in the data correspond to
modes of the feature density. The goal then is to detect modes of the density and assign
each observation to the domain of attraction of a mode. The modal structure of a density
is summarized by its cluster tree; the modes of the density correspond to the leaves of the
cluster tree. We have pursued a plug-in approach to cluster tree estimation: estimate the
cluster tree of the feature density by the cluster tree of a density estimate. For some density
estimates the cluster tree can be computed exactly; for others we have to be content with an
approximation. We have developed a graph-based method that can approximate the cluster
tree of any density estimate. Due to sampling variability, density estimates tend to have
spurious modes that do not reflect modes of the feature density and that will lead to spurious
branches in the graph cluster tree. We have proposed excess mass as a measure for the size
of branches of the graph cluster tree, reflecting the height of the corresponding peak (or
peaks) of the density above the surrounding valley floor and its spatial extent. Excess mass
can be used as a guide for subjective pruning of the graph cluster tree. The graph cluster
tree of the nearest-neighbor density estimate is (essentially) the single linkage dendogram.
Excess mass pruning is a generalization of the runt pruning method for extracting clusters
from a single linkage dendogram proposed by Stuetzle (2003).

In the examples presented in Section 7, as well as in about a half dozen others not
reported here, we have observed that:
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416 W. STUETZLE AND R. NUGENT

1. Single linkage clustering—extracting clusters from the single linkage dendogram by
dendogram cutting—is not a viable clustering method. Pruning branches with small
size is vastly superior.

2. The other standard hierarchical clustering methods (average and complete linkage,
and Ward’s method) and model-based clustering cannot find clusters that are highly
nonconvex (bullseye), whereas generalized single linkage can.

3. In the (admittedly small number of) examples, generalized single linkage cluster-
ing was consistently among the top performers. This suggests that the performance
penalty paid for the flexibility of generalized single linkage clustering (the ability to
cope with nonconvex clusters) is small.

4. Kernel density estimates with bandwidth determined by least squares cross-
validation tend to have many modes, most of them caused by sampling variability,
and pruning the graph cluster tree is crucial. Runt size and runt excess mass provide
good indicators for the number of groups.

5. Kernel and nearest-neighbor density estimates give comparable clustering perfor-
mance in most examples. This came as a pleasant surprise because the calculations
for the nearest-neighbor estimate are very fast: clustering the Handwritten Digit data
with 2000 observations and 256 variables takes less than 10 sec on a modern PC.

There are several directions for future work:

Other density estimates: Kernel and near-neighbor density estimates are known to
be susceptible to the curse of dimensionality. It may be worthwhile to investigate the per-
formance of generalized single linkage clustering with other density estimates potentially
less impacted by high dimensionality, like Projection Pursuit density estimates (Friedman,
Stuetzle, and Schroeder 1984; Friedman 1987).

Alternative pruning strategies: Excess mass pruning is based solely on the promi-
nence of peaks of the estimated density, that is, their height and spatial extent; it does not
take into account the spatial separation between peaks. Pruning strategies taking into ac-
count both prominence and separation may allow for better detection of small but highly
isolated groups.

Automatic pruning: Subjective pruning casts doubts on interpretations of clustering
results and makes quantitative comparisons of results difficult. A fully automatic pruning
method (analogous to model selection methods for regression and classification) would be
preferrable. The work of Nugent (2006) contains some preliminary ideas and results.

SUPPLEMENTAL MATERIALS

Data and results: A zip archive containing an R package implementing generalized sin-
gle linkage clustering as well as the Latex source, R code, and data needed to reproduce
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article, Appendix, and all the figures and numerical results presented therein is available
online. The file “README.txt” in the archive has a detailed description of the archive.
(Stuetzle-Nugent-supp.zip)
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