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What did we think about last time?

I K-means: partitioning obs into spherical clusters; algorithm
iterates between choosing optimal assignments and centers

I Can have variation depending on starting centers; use elbow
plot (or other consensus criteria) to choose K

I Spherical K-Means:
I Normalize the distances, use cosine dissimilarity
I Like projecting to surface of sphere, using Euclidean distance

I Document Clustering
I Can turn documents into quantitative variables using TF-IDF
I Cluster the Document-Term matrix using Sph.K-Means
I Can select the most important words
I Also visualize using word clouds

Now we’ll

I check out some statistical clustering tools
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Spectral Clustering

Interested in using the connected structure of the (dis)similarity
matrix to find clusters; how can we “walk” from point to point?
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Think about walking in (high-density) neighborhoods

I Where would be easy to walk? More difficult?
I How would our walks change if we change the size of the

neighborhood?
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Spectral Clustering

Interested in finding clusters based on “connectivity” of data

Example Algorithm

I Calculate the affinity Aij for all pairs of points

Aij = e(−‖xi−xj‖
2/2σ2)

I Calculate D, diagonal matrix with elements = row sums of Sij
Construct L = D−1/2AD−1/2

I Find the eigenvector/value decomposition of L;
select the k largest eigenvectors

I Create new data set Y (eigenvectors in columns);
normalize the rows to have unit length

I Cluster Y using k-means

Essentially, we’re creating a transition matrix, using the
eigenvectors to project observations into a different space,
clustering the observations there
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Examples (Ng, Jordan, Weiss)
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Examples (Meila, Shi)/Variations

I Very commonly used with image segmentation
I Normalized Cut algorithms; Markov Walk algorithms
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Model-Based Clustering/Mixture Models

Now adopting the statistical clustering approach:

Assume data are sample from a population with underlying density;
estimate density, use its features to determine clustering structure

In model-based clustering, we assume the population is a weighted
combination of the true groups

f (x) =
K∑

k=1

πk fk(x ; θk)

where
∑

k πk = 1 and 0 ≤ πk ≤ 1

Most common to assume that the components are Gaussian;
however all sorts of variations exist:

I skewed normal, t-distributions, beta, inverse hyperbolics,
you name it (if it can be estimated)

I add noise component, group for outliers, contaminated or
truncated distributions
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Estimating the Density

The estimation procedure uses an EM algorithm where it searches
for the “best fit” to the data

What is a “best fit”?

Chooses the best K , the best type of Gaussians (or others) using
the Bayesian Information Criterion:

BIC = 2 · log(L(x |θ))− log(n) · p
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Back to Our Example
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Asked for 7 (Gaussian) Clusters
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Searched over 2:15 Clusters
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Overfitting MBC

If your assumed density shape is not a good match, MBC often
picks too many components; one group = one cluster prob wrong
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Scenario where you overfit on purpose and then post-process by
merging components that “go together” (entropy, connectivity)
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