Nonparametric Clustering

(Wishart 1969; Hartigan 1981; Wong & Lane 1983; Cuevas 2000, 2001)

- ullet Assume a correspondence between groups and modes of the density p(x)
- Wishart: methods should "resolve distinct data modes, independently of their shape and variance"
- Define the *cluster tree* of a density as the fundamental quantity to be estimated by nonparametric cluster analysis

"High density clusters" (Hartigan 1975)

- Define a level set of a density p(x) at level λ as the subset of feature space where the density exceeds λ : $L(\lambda;p)=\{x|p(x)>\lambda\}$
- Connected components of level sets have a hierarchical structure.

For any two conn comp A and B: $A \subset B$, $B \subset A$, or $A \cap B = \emptyset$

The Cluster Tree of a Density

Formal Definition of Cluster Tree (Stuetzle 2003)

- Each node N of the tree represents a subset D(N) of the support L(0;p) of p (a high density cluster of p) and is associated with a density level $\lambda(N)$.
- Root node represents entire support of p; density level $\lambda(N) = 0$.
- Determining descendants of a node N:
 - Find lowest level λ_d for which $L(\lambda; p) \cap D(N)$ has two or more conn comp.
 - If no such λ_d exists, p has only one mode in D(N); N is a leaf of the tree
 - Otherwise, let $C_1, C_2, ... C_k$ be the conn comp of $L(\lambda_d; p) \cap D(N)$. Create two daughter nodes for C_1 and C_2 (or $C_2 \cup ... \cup C_k$), each at level λ_d .
 - Apply definition recursively to daughter nodes.

Representing the Connected Components' Hierarchical Structure: **The Cluster Tree**

Corresponding Feature Space Partition

- Procedure identifies nine modes, eight clusters;
 cluster tree is exact/accurate for density estimate
- First split is artifact of density estimate;
 next three splits identified the four groups;
 subsequent splits correspond to spurious modes

Cluster Tree: Olive Oil Data

All Observations: ARI = 0.587

	C1	C2	СЗ	C4	C5	C6	C7	C8	C9	
A1	23	0	0	1	0	0	0	1	0	
A2	0	47	0	8	0	0	1	0	0	
A3	0	0	57	149	0	0	0	0	0	
A4	5	17	0	13	0	0	0	1	0	
A5	0	0	0	0	61	4	0	0	0	
A6	0	0	0	0	5	28	0	0	0	
A7	1	1	1	0	0	0	1	15	31	
A8	0	0	0	0	0	0	0	50	0	
A9	0	0	0	0	0	0	51	0	0	

- Region 3 separates early; Areas 7, 8, 9 split shortly therafter
- Area 1 isolates itself from the remainder of Regions 1 and 2
- Followed by a split of Areas 2, 3, 4 from Region 2
- Areas 2 and 3 form clusters; Area 4 is split among clusters
- Region 2 splits into clusters for Areas 5 and 6
- Some misclassification of areas within regions; Very little misclassification across regions