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What did we think about last time?

v

Linear Discriminant Analysis

v

Quadratic Discriminant Analysis

v

Visualizing (Dis)Similar High-Dim Observations

v

Icons/Glyphs
What it's like after being a Math Major

v

Now we'll try
> looking for and visualizing high-dim structure

» clustering observations with specific structure goals

N
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Clustering

Often we're interested in determining the presence (or absence)
of group structure in our data

> sets of genes with similar expression patterns

» food samples with similar infrared spectra

» voting preferences in the United States

» marketing segments (who buys what?)

> learning trajectories over time

» online chatter changing topics

Goal: to identify distinct groups in a data set and assign a group
label to each observation; observations are partitioned such that
observations in one subset are more similar to each other than to
observations in different subsets



Clustering

What is a group/cluster?

How many are there?

How sure are we?

What do they look like?

What properties do they have?

What happens when we get new observations?
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Clustering Approaches

Most approaches can be very loosely binned into two categories:
Deterministic/Algorithm

» Clusters often defined by distance (or dissimilarity) measure
» Largely data-driven

» Structure determined by algorithm, user-chosen parameters
» Often used for very large data sets

» Research often concentrates on approximations

» Change the data, change the clusters

Statistical:

Assume data have an underlying population distribution
Groups are features of the unknown population density
Estimate the density; estimate the clusters

Can assign probabilistic labels; clusters have well-established
statistical properties

» Suffers from problems associated with density estimates

v

v vy

Newer methods borrow strength from both sides
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Hierarchical Clustering

Algorithm that links observations in order of closeness in a
hierarchically linked structure (dendrogram); deterministic

Most common version is agglomerative

» Every observation starts as its own group

» Compute all intergroup distances*

> Merge the two closest groups; update distances
» Repeat the previous step until have one group

Height
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Hierarchical Clustering

What is the intergroup distance? User needs to choose

> Single Linkage: d(G1, G2) = miny.eg, xe6, d(Xi; X))
Chaining effects; walking through nearest neighbors; cool
theoretical properties

» Complete Linkage: d(G1, G2) = maxyeq, xea, d(Xi, X))
Tends to chunk data into compact spheres; popular in practice

> Average Linkage: d(Gi, G2) = averagex.cc, xcG,d(xi, X;)

» Other linkage types include: Ward's method, median,
centroid, prototype

So how many clusters do we have? User chooses cut threshold.
Reasons can be

> theoretical

» application-driven

> subjective
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Back to our odd example
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K-means

Algorithm to partition observations into spherical clusters

Measure “quality” of clusters:within-cluster squared-error criterion

) IDRCEEN:
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Required: Set the number of clusters, K, in advance.

Given a set of K initial cluster centers, alternate between:

> Assign each observation to the closest center

» Recompute the centers given the current assignments
Stop when the cluster assignments/centers no longer change.
Each step decreases the within-cluster criterion.

Theoretical results tell us we'll converge to the global optimum.
Real life laughs in the face of theory.
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K-means:

In practice:

> First few steps correspond to large drops in the criterion;
later steps correspond to negligible drops.

» Use K randomly chosen observations as the starting centers
(but don't have to; can choose specific centers)

» Have an idea of what K should be in advance

If we increase K, what happens to the within-cluster criterion?
We use an elbow graph to determine a “useful” K.

Total Within Sum-of-Squares
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Back to odd data
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K-means is also dependent on the set of starting centers you

choose; solutions can vary widely. Often people simulate lots of

K-Means solutions and search for the most stable one.
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