Classifiers/Icons

Rebecca Nugent

Department of Statistics, Carnegie Mellon University http://www.stat.cmu.edu/~rnugent/PCMI2016

PCMI Undergraduate Summer School 2016

July 12, 2016

What did we think about last time?

- Partitioning our Space to Separate Classes
- Classification Trees
 - ► Can prune trees to reduce complexity
 - ▶ Pay attention to what happens to your smaller classes
 - ► Can stabilize with ensembles like random forests
- Can use tree structure for all sorts of decision rules; need idea of split criteria
- General Discriminant Analysis
- Choosing Decision Boundaries based on Posterior Probabilities

Now we'll try

- modeling these posterior probabilities with linear/quadratic discriminant analysis
- Start looking for structure without labels

Basing Decision Boundary on Posterior Probability

$$P(Class j|x) = \frac{\pi_j \cdot p_j(x)}{\sum_{l=1}^{L} \pi_l p_l(x)}$$

Dependent on group size (π_j) and shape of density $(p_j(x))$ Can find post. prob for any class at any location in feature space

Choose most likely class with post probs: $\operatorname{argmax}_k P(\operatorname{Class} k|x)$

Linear Discriminant Analysis

Assume densities are Gaussian and the covariances are equal What happens if we compare the posterior probs of two classes?

$$p_{j}(x) = \frac{1}{(2\pi)^{d/2} |\Sigma_{j}|^{1/2}} e^{-1/2(x-\mu_{j})^{t} \Sigma_{j}^{-1}(x-\mu_{j})}$$

$$\frac{P(Class \ j|x)}{P(Class \ k|x)} = \frac{\frac{\pi_{j} p_{j}(x)}{\sum_{\pi_{l} p_{l}(x)}}}{\frac{\pi_{k} p_{k}(x)}{\sum_{j} \pi_{l} p_{l}(x)}} = \frac{\pi_{j} p_{j}(x)}{\pi_{k} p_{k}(x)}$$

Taking log:

$$\log(\frac{\pi_j}{\pi_k}) + \log\frac{(2\pi)^{d/2}|\Sigma_j|^{1/2}}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} - \frac{1}{2}(x-\mu_j)^t \Sigma_j^{-1}(x-\mu_j) + \frac{1}{2}(x-\mu_k)^t \Sigma_k^{-1}(x-\mu_k)$$

Covariances equal:

$$\log(\frac{\pi_{j}}{\pi_{k}}) - \frac{1}{2}(\mu_{j} - \mu_{k})^{t} \Sigma^{-1}(\mu_{j} - \mu_{k}) + x^{t} \Sigma^{-1}(\mu_{j} - \mu_{k})$$

Linear in x; what do we need to estimate?

Why So Serious?

Quadratic Discriminant Analysis

Back to comparing posterior probabilities of two groups:

$$\log(\frac{\pi_j}{\pi_k}) + \log\frac{(2\pi)^{d/2}|\Sigma_j|^{1/2}}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} - \frac{1}{2}(x-\mu_j)^t \Sigma_j^{-1}(x-\mu_j) + \frac{1}{2}(x-\mu_k)^t \Sigma_k^{-1}(x-\mu_k)$$

Allow covariances to be unequal; boundary stays quadratic in x.

- Far more flexible boundaries
- Comes at the cost of far more parameter estimation
- Can have fitting problems in high dimensions

Can also use discriminant analysis for dimension reduction

- ► LDA/QDA essentially project separation information given the classes into "discrimination" space. Dimensions are in decreasing order of "information"
- Can choose smaller number of "discrimination variables"

Seriously, Why So Serious?

Finding Structure without Labels

Often referred to as *unsupervised learning*: determining and extracting structure in data without the use of a response variable.

We'll start with trying to visualize groups of similar observations.

- Turns out that humans are pretty bad at seeing similarities in rows and columns of data
- Problem gets much harder in high dimensions
- Much better at seeing similarities in objects or pictures
- Often use icons or glyphs to represent high-dimensional multivariate data
- Easier to compare attributes of pictures than visually compare high-dim data
- Look for groups, patterns, outliers, etc in the pictures

Common Glyphs

- ► Stars: each variable represented by length of vector; vectors are connected; variables counterclockwise from x-axis
- ► Spider/Radar: can put all stars on top of each other to assess similarities; each variable is a "spoke" of the spider web
- ► Segment Diagrams: each variable has a piece of a circle; length of radius corresponds to variable value
- Thermometers: start with two variables being the x,y coordinates; then add more variables as features of thermometer (width, height, proportion filled, etc)

CMU Undergrads: Stars

TV Time, HW Time, Classes

1	>	▶	•	•	\triangleright	Þ	Þ	Þ	,
1	2	3	4	5	6	7	8	9	10
•	\triangleright	D	\triangleright	\triangleright	Þ		•		Þ
11	12	13	14	15	16	17	18	19	20
Þ	\triangleright		Þ	▶	,	>		•	
21	22	23	24	25	26	27	28	29	30
Þ	\triangleright		\triangleright	\triangleright	>		1	Þ	\triangleright
31	32	33	34	35	36	37	38	39	40
Þ	P	b	Þ		>		,	•	
41	42	43	44	45	46	47	48	49	50
		\triangleright	,		Þ	D	\triangleright	•	Þ
51	52	53	54	55	56	57	58	59	60
1	•	•	Þ	\triangleright	\triangleright	Þ	Þ	•	Þ
61	62	63	64	65	66	67	68	69	70
>	b		b	\triangleright	D	b	Þ	D	•
71	72	73	74	75	76	77	78	79	80
D	\triangleright			•			1		>
81	82	83	84	85	86	87	88	89	90
	Þ			•		>	,		
91	92	93	94	95	96	97	98		

CMU Undergrads: Stars

CMU Undergrads: Spiders

CMU Undergrads: Spiders

CMU Undergrads: Segments

CMU Undergrads: Thermometers

Chernoff Faces

Probably the most famous statistical icon/glyph; based on human's ability to distinguish differences in people's faces

One face per observation; represent variables by facial features

- ► TV Time = Height of Face
- ▶ HW Time = Width of Face
- ► Classes = Shape of Face
- Gender = Height of Mouth
- Major = Width of Mouth
- Class Yr = Curve of Smile
- ► Facebook = Height of Eyes
- ▶ Netflix = Width of Eyes
- ► TV Love = Height of Hair
- Avg Sleep = Width of Hair
- ▶ Device = Hairstyle
- Sports Love = Height of Nose
- could also have width of nose, width of ears, height of ears

CMU Undergrads: Chernoff Faces

CMU Undergrads: Chernoff Faces

