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What did we think about last time?

» Partitioning our Space to Separate Classes
» Classification Trees
» Can prune trees to reduce complexity
» Pay attention to what happens to your smaller classes
» Can stabilize with ensembles like random forests
» Can use tree structure for all sorts of decision rules; need idea
of split criteria
» General Discriminant Analysis
» Choosing Decision Boundaries based on Posterior Probabilities

Now we'll try

» modeling these posterior probabilities with linear/quadratic
discriminant analysis

» Start looking for structure without labels

N
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Basing Decision Boundary on Posterior Probability

7j - pi(X)
Sy mpi(x)

Dependent on group size (7j) and shape of density (pj(x))

P(Class j|x) =

Can find post. prob for any class at any location in feature space

Density

Choose most likely class with post probs: argmax, P(Class k|x)
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Linear Discriminant Analysis

Assume densities are Gaussian and the covariances are equal
What happens if we compare the posterior probs of two classes?

) — 1 —1/2(x—p) 5 (x—py)
PJ(X)*(zﬂ)d/z‘zj‘lp . '

. 7;pj(x)
P(Class j|x) _ Smp(9 _ mpi(x)
P(Class k|x) — mpPc(x) w4 pr(x)
> mipi(x)

Taking log:
T (27T)d/2|zj|1/2 1 Nty —1 ] 1 ts—1
|0g(7?k)+|°g W—i(x—m) Zj (X—MJ)+§(X—Mk) T (=)

Covariances equal:

1 . .
o) = 5 (= ) Gy — ) Xy — )

Linear in x; what do we need to estimate?
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Why So
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Quadratic Discriminant Analysis

Back to comparing posterior probabilities of two groups:

T (27T)d/2|zj|1/2 1 tv—1 1 ty—1
|0g(77k)+|°g W_E(X_W) Zj (X—Mj)+§(X—Mk) T (=)

Allow covariances to be unequal; boundary stays quadratic in x.

» Far more flexible boundaries
» Comes at the cost of far more parameter estimation

» Can have fitting problems in high dimensions

Can also use discriminant analysis for dimension reduction

» LDA/QDA essentially project separation information
given the classes into “discrimination” space. Dimensions are
in decreasing order of “information”

» Can choose smaller number of “discrimination variables”
6
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Seriously, Why So Serious?
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Finding Structure without Labels

Often referred to as unsupervised learning: determining and
extracting structure in data without the use of a response variable.

We'll start with trying to visualize groups of similar observations.

>

Turns out that humans are pretty bad at seeing similarities in
rows and columns of data

Problem gets much harder in high dimensions
Much better at seeing similarities in objects or pictures

Often use icons or glyphs to represent high-dimensional
multivariate data

Easier to compare attributes of pictures than visually compare
high-dim data

Look for groups, patterns, outliers, etc in the pictures
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Common Glyphs

» Stars: each variable represented by length of vector; vectors
are connected; variables counterclockwise from x-axis

» Spider/Radar: can put all stars on top of each other to assess
similarities; each variable is a “spoke” of the spider web

» Segment Diagrams: each variable has a piece of a circle;
length of radius corresponds to variable value

» Thermometers: start with two variables being the x,y

coordinates; then add more variables as features of
thermometer (width, height, proportion filled, etc)
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CMU Undergrads: Stars

TV Time, HW Time, Classes
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CMU Undergrads: Stars
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CMU Undergrads: Spiders

HWTime
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VT



CMU Undergrads: Spiders
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CMU Undergrads: Segments



CMU Undergrads: Thermometers
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Chernoff Faces

Probably the most famous statistical icon/glyph; based on
human'’s ability to distinguish differences in people’s faces

One face per observation; represent variables by facial features

>

vV VY VYV VYV VvV VvV VvV VY

TV Time = Height of Face
HW Time = Width of Face
Classes = Shape of Face
Gender = Height of Mouth
Major = Width of Mouth
Class Yr = Curve of Smile
Facebook = Height of Eyes
Netflix = Width of Eyes

TV Love = Height of Hair
Avg Sleep = Width of Hair
Device = Hairstyle

Sports Love = Height of Nose
could also have width of nose, width of ears, height of ears

16
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CMU Undergrads: Chernoff Faces
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CMU Undergrads: Chernoff Faces
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