Classifiers

Rebecca Nugent
Department of Statistics, Carnegie Mellon University
http://www.stat.cmu.edu/~rnugent/PCMI2016

PCMI Undergraduate Summer School 2016

July 11, 2016

What did we think about last time?

- Extending our Linear Model to include More Variables
- Updating Assumptions
- Regression Trees

Now we'll try

- flipping our regression trees into classification trees
- look at other ways to carve up feature space to label observations

Reminder of our Regression Tree

Use hyper-rectangles to partition feature space into subgroups of similar observations

- predictor variables (X) define the partitions
- response variable (Y) defines the closeness/similarity of the subgroups

Want to answer the questions:

- What variables are useful for prediction and separation?
- What values are useful "cutoffs"?

Hierarchical Binary (Decision) Tree Structure

- ▶ Begin with root node/all observations
- ▶ Search for best split (based on reduction in $D = \sum (Y_i \mu_i)^2$)
- Partition; recursively search for next best split on each "side"
- Stop splitting when size threshold or splitting criteria met
- ▶ In final leaves, each group assigned their average Y value

Reminder of our CMU Undergraduate Data

Surveyed about 100 students in Regression course; interested in how much time spent watching TV/movies

- ▶ time spent watching TV/movies
- time spent doing HW
- how many classes
- gender
- major
- class year
- Facebook friends
- Netflix account
- ▶ how much do you love TV/movies (scale 1-10)
- average sleep per night
- device used to watch TV/movies
- how much you like sports (scale 1-10)
- favorite TV show

Back to our CMU Undergrads

Classification Tree

Can similarly partition our feature space using hyper-rectangles with goal of finding similar subgroups with respect to a categorical variable. In this context, often called a set of labels/classes.

- Root node = all observations
- Search over feature space for "best split"
- Partition; recursively search again, etc
- ▶ Each final leaf/node m is assigned a set of class probabilities: $\hat{p}_{m1}, \hat{p}_{m2}, ..., \hat{p}_{mK}$, the proportion of observations in the node from each class
- Best split defined as optimizing the Gini Index

$$\sum_{m}\sum_{k=1}^{K}\hat{\rho}_{mk}(1-\hat{\rho}_{mk})$$

where m are our leaf nodes, k = 1, ..., K the set of classes

Common to predict binary variable (two classes): Gini = 2p(1-p) where p = prob of one class

CMU Undergrads: Predicting Gender

More Detailed Tree Results

```
node), split, n, loss, yval, (yprob)
   * denotes terminal node

1) root 98 46 F (0.5306122 0.4693878)
2) Device=Computer, Laptop, Phone 82 32 F (0.6097561 0.3902439)
4) Device=Laptop, Phone 46 13 F (0.7173913 0.2826087) *
5) Device=Computer 36 17 M (0.4722222 0.5277778)
10) AvgSleep< 6.75 20 7 F (0.6500000 0.3500000)
20) HWTime< 5.25 9 1 F (0.8888889 0.11111111) *
21) HWTime>=5.25 11 5 M (0.4545455 0.5454545) *
11) AvgSleep>=6.75 16 4 M (0.2500000 0.7500000) *
3) Device=Tablet, TV 16 2 M (0.12500000 0.87500000) *
```

CMU Undergrads: Predicting Math Major

More Detailed Tree Results

```
node), split, n, deviance, yval * denotes terminal node

1) root 98 13.387760 0.1632653
2) HWTime< 5.75 60 5.400000 0.1000000
4) SportsLove< 5.5 27 0.000000 0.0000000 *
5) SportsLove>=5.5 33 4.909091 0.1818182
10) Facebook>=640 16 0.000000 0.0000000 *
11) Facebook< 640 17 3.882353 0.3529412 *
3) HWTime>=5.75 38 7.368421 0.2631579
6) Facebook>=475 23 3.304348 0.1739130
12) Facebook< 900 16 0.937500 0.0625000 *
13) Facebook>=900 7 1.714286 0.4285714 *
7) Facebook< 475 15 3.600000 0.4000000 *
```

How else could we discriminate between classes?

It's really a question of how we could carve up our feature space to best separate the classes. So far, we've used hyper-rectangles.

What's the downside to that? What else might we use?

- Linear combinations of variables? Linear Discriminant Analysis
- Quadratic curves? Quadratic Discriminant Analysis

Class Posterior Probability

When estimating our decision rules, essentially estimating the *posterior probability* of class membership.

If the observation is in this location, what is the chance of it belonging to this class? P(Class j|x)?

Can use Bayes' Rule to figure out most likely class:

$$P(Class j|x) = \frac{\pi_j \cdot p_j(x)}{\sum_{l=1}^{L} \pi_l p_l(x)}$$

Choose the more likely class by ratio of class probs: $\frac{P(Class\ I|x)}{P(Class\ k|x)}$

Discriminant Analysis uses class labels to help separate classes by within-class and between-class variance; want to maximize ratio

Looking at our Bayes Rule, what do we need to estimate/assume?