An Overview of Clustering:
Finding Group Structure in Educational Research Data

Goal: build foundation for understanding a variety of clustering
methods; be able to identify the types of problems and which literature
might be helpful; learn which questions to ask

Timeline: (subject to change depending on audience needs)

e 9:00-9:15am: Intro, Motivation; Goals

9:15-10:00am: Distance-based methods (Linkage Clustering,
K-means, K-medoids)

10:00-10:40am: Density-based clustering (model-based clustering)
10:45-11:00am: Break (for all tutorials/workshops)

11:00-11:30am: Density-based clustering (nonparametric clustering)
11:30am-12:00pm: Visualization, Diagnostics

12:00pm-12:30pm: Longitudinal Clustering/Text (Document)
Clustering

We will also take brief breaks as needed during the blocks of material.

Contact Info:

Rebecca Nugent

Dept of Statistics

Carnegie Mellon University
Pittsburgh, PA 15213
rnugent@stat.cmu.edu
http://www.stat.cmu.edu/~rnugent
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Clustering, in General:

e example of “Unsupervised Learning” - learning without labels

Given vectors X = (X1, X3, ..., Xp), goal is to “understand“ or describe
the joint distribution p(X) of these vectors

Organize, Summarize, Categorize, Explain
Infer properties of p(X) without any labels
Dimension is often higher than supervised learning problems

Could be interested in identifying lower dimension manifold;
are there a few latent variables/traits that summarize the higher
dimensional information?

Are the variables associated with each other? How?
Could just want to know how many groups are in the data

Locate the regions of high density
(both in continuous and categorical data)

Can compare agreement of different results;
Need labels to return misclassification rate

No one measure of success, can be dependent on application
Trying to characterize the “structure” in the data

Might define “success” as method that “best captures” the structure

Clustering in Education:
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Datasets:

e Four Groups, two dimensions; well-separated

four.groups<-read.table("fourgroups.dat"); dim(four.groups)
plot(four.groups,xlab="x1",ylab="x2",pch=16)

e Seven groups, two dimensions; varying separation and shapes

aggregation<-read.table("aggregation.txt")
aggr .data<-aggregation([,1:2]
aggr.labels<-aggregationf,3]
plot(aggr.data,xlabﬂ"xl“,ylab="x2",pch¥16)
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The Assistments Project: http://www.assistments.org

e Web-based tutoring program developed by Carnegie Mellon
University, Carnegie Learning, and Worcester Polytechnic Institute

%

e Blends tutoring “assistance” with “assessment” reporting

e Over 4000 students in Massachusetts and Pennsylvania utilized the
system in 2007-2008

e System currently tracks/reports on about 120 skills per grade level

Goals:
e Help prepare students for end-of-year exams, e.g. MCAS

e Help teachers identify weaknesses/strengths in their students
and in their curriculum

o Allow teachers to use their time more effectively

e Help researchers discover how students learn

_ ASSiSTments | Assess - ACCOURE . Wogert (mogentsiaticmuied) Lo
PruhlemSets Assisbments  Search  View Comments  Transfer Modeis  Messages  Need help on this page?

Build - Problem Sets
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Teachers can build questions or select from problem test banks.
Students are assigned a set of questions online for practice.

Each question coded as a main, broken up into scaffolds, one per skill.

The student can
e Attempt to answer
e Ask for a hint
If the student is incorrect
e scaffold questions start
e students are prompted to answer steps

e after hints exhausted, system provides the answer

System tracks which scaffold questions students answer correctly, how

many hints they need, how long it takes, and many other variables.
Problem Set "SiGradeMCAS” iy

1) Assistment #1474 "1474 - 1993MCASNn3ta™
Atthe end of évery 2nd mile 6f the Boston Marathor, atypnealmaramonmnmriak:sahoutémof
‘water, At this rate; how many.olinces of water would an average runmer take in an entire 26 mile

maraxhon’?
Fillin:
v 524
v 52
Scaffold:

First, you nced to find out how many times a runner takes the water during the entire marathon.
Fill in:

v 13

v 131

Hints:

« A mummer typically takes waterevery 2 miles.
Divide 26 miles by 2 miles to get an estimate of how many times 2 ruener takes water in the
marathon.

« 2 divided by 2 is 13. Please-enter 13°

-Scaffold:

Rjghl A runner,will take water13 times during thie race. How rmany ounces of water would an
average runnet take i in the entiriy 26.infle marathon?
Fillin:

v 52
v 524
Hints:

« Yopniegd to multiply the nnmber of times 4 ninoer will take water by:the snmber of ounces of
water each tinie,

o A nmuer will take water 13 times during the marathon.
A runner takes about 4-cunces of water each time.

Rebecca Nugent, Department of Statistics, Carnegie Mellon University, 2014




You are previewing content. 1998MCASNuUm3ta (#F1474)

T

4
At the end of every 2nd mile of the Boston Marathon, a typical marathon runner
takes about 4 ounces of water. At this rate, how many ounces of water would an average
runner take in an entire 26 mile marathon?
Comment on this guestion

' Break this problem into'steps'

e your answer below:

At the end of every 2nd mile of the Boston Marathon, a typical marathon runner
takes about 4 ounces of water. At this rate, how many ounces of water would an
average runner take in an entire 26 mile marathon?

{:-Breal this prablem into steps

Type your arswer below:

L oSubmit Answer

Let's move on and figure out this problem.

%,

#
First, you need to find out how many times a runner takes the water during the
entire marathon.

Comment on thit guestion |

The results all get summarized in several types of reports: teacher,
class, student, skill, etc; online access to users, can study how they learn
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Common goal: estimate skill mastery

Long story short: often use cognitive diagnosis models to estimate
student skill mastery profiles, but high dim data makes this difficult.

Ez: Dynamic Inputs, Noisy “and” Gate model (DINA):

o 1—ny
P(Y;; = 1nij, s5,95) = (L — s5)™g; "

where 7;; = Hszl aXi® + q;p = 1 if student 4 has skill k, = 0 if not.
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The data we can collect:

e Student response matrix (Y')

i1 Y2 --- WJ
Y =

YN,J

N students, J items

Y;; =1 if student ¢ answered item j correctly; 0 if incorrectly;
N A if not answered

e Assignment matrix of skills needed for each item (Q)

qi1 q1,2 --- 4qLK 1 0 ... 0

451 42 --- QLK 0 1

J items, K skills

Qjr = 1 if item j requires skill k; 0 if not.
One estimate for oy, is the Capability Matrix (Nugent, Ayers, Dean)

J
2 i1 Ivi#na - Yig - dik
B =

7
> =i Ivi#NA - GGk

B;i: % of items student 7 answered correctly for skill k.

By scales for the number of items seen; reduces influence of
over-represented skills; incorporates missingness

Biy = éur € {0,1}

Maps students into a unit hyper-cube (like CDM estimates).
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Datasets:

e Assistments: 551 students, 3 Skills (Evaluating Functions,
Multiplication, Unit Conversion)

Unit Converskon
Multiplicatlon

o

-

assist3d<-read.table("assist3d.txt")

dim(assist3d) ##551 students; 3 var

library(scatterplot3d) #i#need to install
scatterplot3d(assist3d,xlab="....",ylab="....",zlab="....",pch=16)
library(rgl) #i#need to install
plot3d(assist3d,xlab="....",ylab="...n“,zlab="...",size=5)

Assistments: 344 students; 13 skills

assist13d<-read.table("assist13d.txt")
dim{assisti3d) ##344 students; 13 var
pairs(assist13d) #i#iscatterplots for each pair of variables

Assistments: 1000 students; 20 skills

assist20d<-read.table("assist20d.txt")

dim(assist20d) ##1000 students; 20 var

pairs(assist20d4[,1:10]) ##just looking at a few
table{assist20d[,1]); table(assist20d[,2]); table(assist20d4[,3])
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Looking for Group Structure in Data: Clustering

Goal: partition observations such that those in the same cluster are
“more similar” to each other than they are to those in other clusters

Characterizing a Group/Cluster: want to summarize the structure

e Center: n\mn‘,mﬂds"aﬂ 5 P(MO*%?Q/VE.?OB.%YWW obs

o Spread: StlLy, VOAIONL | (UL, qmuh'l e
e Shape: (gussian,, splwtical, elhpse, curviligon.

Also need an assignment list; which observations belong to the cluster?
T -1 1€ X 15 assgd ty clusten Oy

Acely Shorthand Jou ST onlyy sum fron
Xéc\ é‘xtéﬁk obs in  fJelusterly)

Distaficss /Dissimilarities

To understand /measure structure in a group of variables or feature
vectors, need an idea of how observations relate/compare to each other.

Notation: X‘—'— i&b XQ e &l% e lKP (J'us% usi(}j r%als_; COU{OL

. X \aneé Cocte. onead
nobs n J’)-dmfl Poce. ¥, refers K vor Cdﬁ%)
. . X, (efgs o h obs .
Measuring Distance: Commo6h to describe the relationship between
two observations by their “distance” or “dissimilarity”: d(i, 7)

aa;)p If_ﬁz‘é.in between pairs et obs X, XJ'

Properties of a Distan
et &) non- nagueivity ol1,y)20 of dissinilantu bsing
BT glevehifi cobion. oéiyy) =0 He RHrst

gs | 5 W Defaikeness (i) =0 W€ (=] |
) ‘ )d(i}‘){_d Lt)qtd(JJK)

Rebecca Nugent, Department of Statistics, Carnegie Mellon University, 2014 10




Often expect d(i, ) to increase as obs become more different/dissimilar.
We store this information in a distance/dissimilarity matrix.

O 0a . - -
oL OI‘—\ element iy = B{()')j)
‘ SUm U

“ whad plopte olizgmall
— ook hke 7

Euclidean Distance: commonly used distance; “as the crow flies”

d(1,J)-}iX:, Y\) m& ). %ﬁwm

K=?

satisSes all Five properies ey dliChaevch
SRS & \’f? PW\ d(]a ls:}/‘f’])lo//‘ ObJ

istance matrlx

NxnN

Can sometimes visualize the structure in the

Heat Map: multicolored representation of a matrix of values; color
spectrum represents the range of Ta,lues (e.g. red = low; yellow = high)
ool

“Obten vsed w/olenss @u%t
Pshates values
Why is the structure evident? What happens in practice?

Obst vection1 $ Gl 11 whatt does diaSmaQ ooy, lihe 7

oadpr OF 0lusten

What if obs are not ordered by group? What if there are outliers?
will Toov all mixedt L

Potential issues with distances
e distance can change if measurement units change

e variables can have different scales and/or variances

Other distances: Manhattan (city block distance); L-infinity or
Maximum distance; Hamming distance among others

o~
~
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Hierarchical Linkage Clustering

Flot portttion + ppuastes one set of K elusters - to not know
wlatonships

Hierarchical Partitioning: Agglomerative vs Divisive
Arvony Vs

L, opwoces verad yasted sets st clusters
each clusTea n o oNen Pa/th‘ﬁo‘/l,‘ss_fHu Uniov gt ong @1 moL plustens

inthe ko most fecett padihon s clostaiyg WD Ko
Asglomprective 3, S04 W[ Pn, ot Twp olosest! Clugtens o get V-

(Agglomerative) Hierarchical Linkage Clustering: an algorithm

linked structure; generates n possible partitions

Defae cistance 0(Cy,Ca) between elusters (1,0q a5 4 finchon
of o dist V\M/dl‘ssimi}a/n'ﬂ between Jots i those plustens

) Stovct wj evew) olas M s own Clustea
ﬁ) EWL min DMCJJC;)_'_, H\.P/\ﬁé,. C)J Lo
Ci,la

ach 0L oS
* OLP(?I Uskens

2) MNpodturk] have one CIUSTRA
This hierarchical structure is stored in a dendrogram. (’hj?e of b\rwnaiz@

° ook of oL PRLS Dvenghisd [y, it dree
o ‘fmm}ml NOALS —> pbSt(N et S
> cterion node — Clusted L)g'@tt/

gL el iSoLPWUR'H«O‘/L

We determine the clusters/partition by cutting the dendrogram.
Can be difficult to choose the partition when structure not obvious.
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Single Linkage: intergroup distance: smallest possible distance

A(0,02)= min d(xy)
Yeli, ﬂe(‘a
Characterized by “chaining”, nearest neighbor effect, good at picking

out curvilinear /non-spherical groups

Complete Linkage: intergroup distance: largest possible distance

\ = maX a(){)
4(C,.0) XeC,Yel 9)

Characterized by splitting the data up into more compact subsets

Other types of Linkage:

® Average: d(c.}J C&) N @\[9 0{()&@)
e Cblﬁﬁf’a

e Centroid: d(cbca); Il S(IC:“YC; “ d;s-l-av\& b@hvpia\ecm‘ﬂﬂ

o Wants (0, 02)= 2101 10Y gy ¢

Mg two clustens with 011
smallest Woads olist
getimizes mini:gﬁ'za,’hom Nete
. Minima}?iiglﬁé&ec%ﬂgelg i)??ﬂkﬁ%gcbtypes; less well known)

( %iﬁ Y_\:ﬁbfbh “\(ﬁVLF

Can use any type of distance/dissimilarity;
in R, need to pass in a dist structure or a full distance matrix.

What kind of dissimilarities might we use?
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To group similar obs, some methods try to balance minimizing
within-cluster distance and mazimizing between-cluster distance.

Within-Cluster Distance: (listance petwten Al Pan'rs of Obs
, within & clustt
all distanes spoutd be omall
“Y\“\S | XL‘QYJﬁCL usten Cy, o oF BIZ2 nn) Le, ICngYIg_ |
for elustn Cy m,;") poirS

Between-Cluster Distance: o {shness between ol Pm(s of Dl v &;ﬁtOﬂS
i ohEfoLevd elustrs | chioud be longer

“YL-XJU Xee O L0yl =Ny
¥y € Cy 10,s1=n

have 1y - e poirs

K-means: algorithm to partition obs into K spherical clusters

Measure “quality” of clusters with within-cluster squared-error criterion

4 . |
we=2" S -t iy spuead Belpisy

=t Xe i . ‘
0w LCNC o lown riterion— highed
EMOVAA  Opgprnartions Qualt 43

ustis
Required: Set %he number of clusters, K, in advance.

Given a set of K initial cluster centers, alternate between:
e Assign each observation to the closest center
¢ Recompute the centers given the current assignments

Stop when the cluster assignments/centers no longer change.
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Each step decreases the within-cluster criterion:

e Given the cluster centers: yued P;‘C,K A minimize.
Fagien 0 24 e’
& pien L Z é‘ D% -Yedl
= A
J

nohfal@ ) ustassion
cess dys- ton @) T2 ? :
e (Given the currént assignrﬁéx? B MP b

sl o ID:'GY- My o minimiet.

Jot o gren Clust CKJ 2 e —md{t
Xiely

R Y
spallest whan Y- x;,}émw
A~ ot conden X

Xely
424 (Ri-me)=0

In practice: kel af’?f z( m)——mmﬁ{)
Fit

e First few steps correspond to large drops in the e

later steps correspond to negligible drops.

e Use K randomly chosen observations as the starting centers
(but don’t have to; can choose specific centers)

e Have an idea of what K should be in advance

What if we don’t know K7 How do we choose?
If we increase K, what happens to the within-cluster criterion?

)Lz{\ SUY R nowax I by 1L, Ynove one pt e to the now clusta.
Ke! xele - WO onitnion cecwases (nuwclusten has WC= 0)

We use an elbow graph to determine a “useful” K. fn gcruwﬁ, 5)0]:'11'1‘/%
mowes obs (1pSed 1o ans
\7 ' veduces paiterior

wC
L TP—ey
+ Clusrers | | 4
What do we look for in the elbow graph? Whare dloHhe | WFH ﬁof ;
M‘LW oh YlﬂgJ \g1bke Wps bégm X
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“pe, [-Means Consensus Jon more. (ékem\a

K-means is also dependent on the set of starting centers you choose;
solutions can vary widely. How do we pick? 'l‘f/lﬁ. lots of random Sfadﬁ

lock $or stapie vales oF £ whew dothe negligiol ¢ Jip > bagin
Lonsi stenth 5

Some restonch achiocates "y,
€Yl ‘;)
l)p}ettfg a stable L 6+ l

) yun L-ans SO0 (st
pick solphon W louest eaternion_
K-Means can be strongly influenced by outliers (since based on means).

K-Medoids: Partitioning around Medoids

Medoid: the observation in the data set (cluster) whose average distance
to all the other observations is minimal; not as susceptible to outliers

wuan gt get ‘
P‘/”ed Medoidl 15 always an Obs

3 A i
" "
] j\(_!a LY

A “g A0S e dlatar s€ eluster

rwclowf o o ot hae-b be)

Given a starting set of K o&)serva,tmns (medoids), alternate between:

a,~ v

o Assign each observation Yo the C‘loistest medoid.

o Vi arpmift X-GIT Jera
e For each cluster, find the observation that corresponds to the lowest

criterion value for the cluster; reassign as medoid
X H . 2 % -
WL‘Y\ f WXe X, Y madoid n cluster (.
welre

Cluck each obs asa poterchel medoid

Somenmes  -pgoils ugsTthe Cartenion € 11XC-Ye |l gl’gﬁ%{lﬁg s
until cluster assignments no longer change. ” '5 v of
Spuoud. dist )

Much more computationally difficult; at each step, criterio %has to be
optimized over all obs (which one is the new medozd?)

10 be de—h
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So far, we have looked at distance-based approaches;
in contrast, we can adopt a statistical approach:

Observodions  apre consioeud. sample, Siom Uiknowy]
lptvovL punsy X
popvla M) e )
(ol & eshonate pic) and its Jompmhes -lewiu s{location size
e
) Show €tC
T\,\DPMS; Dﬁunsi@ €3ﬁfﬂ0j't0;/b B —a
et F i bstmate)
There are two subfields:
e Parametric Qssopiotes g »56){¢[—H e ynogled W/ e d,mg]fj |
madel s a setof | ek &aussiak;[%ﬂaj %nb )
Use Hhese 1o Chavackaice e lusters

e Nonparametric
T

Os30ciates N moateb lpote &f Lorthouns Df‘ﬁ’lé 0&0}?5@ :
Modes € Gropslelusters Fuol tlostet iafo

Model-Based (Parametric) Clustering: assumes that each population
subgroup has its own density; overall pop is weighted combination

6
[x)= DaX,0n) 6
PLx é /”9 Pﬁ ﬂ) é)/ﬁ%@:} @f/ﬂﬁﬁ/

g Iuted combination, of il plensities

Oy = set of povamutun sprufie pikedensity)
_N*a*uJi f‘)d‘g
bhit 5 ab

Bew S}L&p@f, sealb,ttC.

Rebecca Nugent, Department of Statistics, Carnegie Mellon University, 2014 17




What type of densities do we fit?
Most obten (aussians

Assume. p0= & g - Dol ip 8s)

" ssum?.j?X"ﬁzl g Potd Us,c5

o geoup mivhuae: PLO=05x NO LY +05xN (x: gn) X

Bpussians can. hae wigle Varict OF Lovpnianes 5{7&%&5@ !
4 Sy O,Hfo’)ét’j ' ke %a noise
P%Mé (CQYI 50 Comﬂpgyu@
nt, O (STOOTOTO
Lr> 10 1O 1O O

considad 0

va>

T Letins: \lolunw/éhnpe./or.‘w:la:ﬁon, E‘im‘/ Vm;?zb]ef Volume
Choosing the “Best” Model: E@Uﬁ\/ Va/r‘mbl&' S >~
T/ Vwinble/Axis Aligroel - 0
Pick the model that maximizes the Bayesian Information Criterion.
Modeln My (=1,. .10
pic (M) = 2 1gy L(D)- prlenln)

Ao |

L) =¥ \ndepenslawt PRILTITELD
G s wlihosd DE ?gm sach o), have b estime® iy, 2, ((%)
e dﬁﬂ gl i@ng to Lugp g@uﬁom overtrHiog with

L

ols ot5
n=dof Obs:, hopin, ot pwnfTt Jng dééﬂs
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Possibie # o€ ppups
Looking at a Two Group Mixture: 420 9o

@%SW)E@U 6=, . -, q
o ides e lest ool Tocacn &
thert Chotses the best overal
~ Can ipim“ﬂ@, i valves as Jonchon & O
To fit the model, we need to estimate tGhree sets of parameters:
;\z Ty plx ):é} T %(X ' ﬂf)ﬁé)

In particular, the covariance matrix can be parameterized to dictate the

shapes, orientations, etc of the group densities.
Diompese. £5= Ny Dy Ay Dg
9% 2 longest eiggrvalve., ol of e 5" £om pene vt~
Ap = diagovel e OF Stokeol eigenvalves |  hpr qu*hmnp
Do —shwbuy of ¢ igen vectons, ociertuchon. b He @th eompon -
The models are fit using the Expectation-Maximization Algorithm:
EM = it o eshmate HLE in incomplete dlocte ( iy Clusten \aka

E-sip. tompute conalthonal gyprctation ¢f (lusipn labtls M-step ; Lpokrte
After the final model is chosen (by the BIC), the procedure returns: le ot

e the name of the model

e the estimated means and covariance

e the estimated membership probabilities

e the cluster assignments — gy ZCL = Pluston psn ‘B’L obs (
Zov="pp, (1100
C4 Ny O (K105)

-}
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Common assumption: each component represents a population group

If groups are not Gaussian, may overfit the number of components.
| (;Dod rovieize e Likelinod of Hhe data Omlmj' From =ty mod@,@
Cﬁﬂ % !g cm:hnuww dﬂnsj‘fﬂ ’['Da@]\(fl’\

dlegue o accwat) wWHin & ity ot
bavssians

1% Corr\?dfﬁ

Classifie
EE\/ moda 0’23 WW@S

Need to think about how you decide to merge components. Options?
XS g how mmm ovellay
nsyiy € Mm% ety 7
Gusters with noer P

What about Gaussian clusters with noise?

mivtue sHrue Srowps sonu random pninfrumatve noise

Two options:

~Langn
~yoam AL

2 )Wodal #as o inrknm pofse Odm.f

£ ﬂﬁ Pe()( Uﬁfﬁ) ‘fﬂo
- Componsnk ~thoet “smzsbfa‘ Ho o b dgg/pmt s Jnoise.

In general, need to be careful about how you interpret the components

(whether or not they represent true groups in the population).
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Nonparametric Clustering:

Often we just associate groups with (Iggh frequency areas.
TTYT—

mewe common o see. tlodp

Groups in the population correspond to modes of the density p(z).

Gives the following definition: contiguous, densely populated areas of

feature space, sep- arated by contiguous, relatively empty regions

a2 slugl downt matten

(Carmichael, George, Julius).

Fu0
A @1{35
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NP Goal: find the modes of a density p(x) (or p(z)); assign observations
to the “domain of attraction” of a mode (contrast with MBC)

W A

2

how dothe ;1< st dssigued:

:P{dOlQ % a’7\

Finding Modes: associate presence of groups/modes with excess mass in

one area surrounded by low mass areas.

Level Sets of a Density: £roS5 50 thpne 0( o dﬁﬂﬁ&ﬂ (éSl’JrfWLf)

L(%: FCx)):iX/PCx)>Q§

lookiaj ot tonmcted camwmﬂ% of lvel set
omch tenn ﬂamia Wﬁﬁs & ool

|

level sefs o

‘st ) nowaze X, g@fr smallea
kel st tontoind i1 lowen level
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NP Goal: find the modes of a density p(x) (or §(x)); assign observations
to the “domain of attraction” of a mode; build cluster tree of p(z);

(NPEz.pdf)

L~>6€€ ot }Wndobdf
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Unlike other clustering procedures, NP clustering is very dependent on
the density estimate p(z).

Each mode of the density estimate <= cluster/population group

Kernel Density Estzmate common nonparametric density estimate

1-dim ?(x)— oh fK X‘XL) h>hardwisth phe Keunel

% 5 jmi V(4) =kaane |

p-dim Pl = 7P £ K(EL) e assurnpho @e@m'é’%m{mm

=

1w hla’? h hna-
PKX)“ Y!l Hl g K(H I(X“Xl)) U haa] @ ﬁnﬁko

Choice of kernel: —s 5 Uﬁlﬂﬂ 6ﬁmmﬂl”MCJ QWP@J% 5€S Skﬂx)dx
. Gausman N/D D

(f) 1 &‘)t m%nﬁff'supfo@t)allﬁ)bs Con—h;bglﬁ/\r

° Epa,nechlkov
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Ll =5 { ") I It Beta (3

. Trlf:mg—l55 U {,;93 Fou [H44 @{‘ﬁﬁl Y

AT I T I [ L
e Box ~ I
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. . . ..ol {
Choosing a Bandwidth: Often trying to minimize an error measure;
there are several reference rules (Scott or Silverman); could also use

cross-validation; open research problem, no “one size fits all” choice
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Assessing /Comparing the Clusterings

Could use percent correct to characterize our results (if had labels).

Advantages/disadvantages:

¢ intrputochon. ot au@wu.d orl sample Size (n <peledd @u‘f)
> Lan fompout GevoSs CIuﬁ%‘rH algotithis | Stanolaadized
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What if the clustering algorithm is not completely deterministic?
6. Knuans - solvtion, dependls on stochiny cortas
tovil Sindl mmsm(e.g,% Lorred) el tous (as many os %as:lblf)

a e measmus
dan?
Several clustering comparison criteria we could use (also applies to
comparing a set of clusters to the truth); most are based on counting

the pairs of observations on which two clusterings agree/disagree.
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Fowlkes-Mallow Indez: geolffletric mean of théq;?gfabﬂity fiat a pair of

points in Cy, are also in the same cluster in C’
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Adjusted Rand-Index (ARI): motivated by seeing that RI does not

range over the entire [0,1] interval. (min(RI)> 0; RI tends toward 1)

Instead we adjust the index to have an expected value of zero under

random partitioning (independent clusterings) with a max value = 1.

Tends to give you credit for splitting a group into two clusters
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Another way of thinking'%bout percent correct is misclassification error:
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(Information-theoretic point of view: entropy, mutual information; V'

Rebecca Nugent, Department of Statistics, Carnegie Mellon University, 2014 26




Using the Criteria:

e You can never compare values from different criteria;

they measure different things

e We can compare the performance of two different clustering
algorithms by comparing each of them against the truth. Pick the

better one. (U ‘Hx@ motg Sfablfj GJ)’)SI%%??fd' O - D@PCHdS Oﬂ@gafs,

e Compare the stability of a non-deterministic procedure by repeating

several times and watching how the criteria change.
Visualization Diagnostics

Reminder of Model-Based Clustering: EM procadume ChooseS

6, Uy, €y
mottl hes highest Ble_

ok ot VOIS SRS 1) o

After choosing our final model, each observation is assigned to the
cluster that corresponds to the highest membership probability (z).
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D Y /t‘: rmx ZL}’_ maxamum Over
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Uncertainty Index: |- /}-L = U1 embaship PA3
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What would the uncertainty vector look like for a “good” set of clusters?
What about a “bad” set of clusters? (g/\/kj
all zolon close,
Spuaol ouct, might St roge s/ rﬁ@
6‘('5 oy classrfied obs
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When looking at other types of methods, we need some kind of
“uncertainty measure”. What Would it mean to be “well-assigned” ?
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Silhouette Measure:
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Given assignments, we find the silhouette value s; for each observation
(vector of length n); characterize cluster by its silhouette values
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Longitudinal /Trajectory Clustering

We've only been looking at structure for observations that only have

one set of measurements.

Sometimes observations may have sets of repeated measurements.

Can be characterized by a path or a trajectory. We're often interested in

determining the “center trajectory” for a group of observations.

Can estimate the number of trajectories, the coordinates of the “center”
trajectories, and the probability of belonging to each trajectory.
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