
An Overview of Clustering:

Finding Group Structure in Educational Research Data

Goal: build foundation for understanding a variety of clustering

methods; be able to identify the types of problems and which literature

might be helpful; learn which questions to ask

Timeline: (subject to change depending on audience needs)

• 9:00-9:15am: Intro, Motivation; Goals

• 9:15-10:00am: Distance-based methods (Linkage Clustering,

K-means, K-medoids)

• 10:00-10:40am: Density-based clustering (model-based clustering)

• 10:45-11:00am: Break (for all tutorials/workshops)

• 11:00-11:30am: Density-based clustering (nonparametric clustering)

• 11:30am-12:00pm: Visualization, Diagnostics

• 12:00pm-12:30pm: Longitudinal Clustering/Text (Document)

Clustering

We will also take brief breaks as needed during the blocks of material.

Contact Info:

Rebecca Nugent

Dept of Statistics

Carnegie Mellon University

Pittsburgh, PA 15213

rnugent@stat.cmu.edu

http://www.stat.cmu.edu/∼rnugent
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Clustering, in General :

• example of “Unsupervised Learning” - learning without labels

• Given vectors X = (X1, X2, ..., Xp), goal is to “understand“ or describe

the joint distribution p(X) of these vectors

• Organize, Summarize, Categorize, Explain

• Infer properties of p(X) without any labels

• Dimension is often higher than supervised learning problems

• Could be interested in identifying lower dimension manifold;

are there a few latent variables/traits that summarize the higher

dimensional information?

• Are the variables associated with each other? How?

• Could just want to know how many groups are in the data

• Locate the regions of high density

(both in continuous and categorical data)

• Can compare agreement of different results;

Need labels to return misclassification rate

• No one measure of success, can be dependent on application

• Trying to characterize the “structure” in the data

• Might define “success” as method that “best captures” the structure

Clustering in Education:
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Datasets:

• Four Groups, two dimensions; well-separated

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

four.groups<-read.table("fourgroups.dat"); dim(four.groups)

plot(four.groups,xlab="x1",ylab="x2",pch=16)

• Seven groups, two dimensions; varying separation and shapes
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aggregation<-read.table("aggregation.txt")

aggr.data<-aggregation[,1:2]

aggr.labels<-aggregation[,3]

plot(aggr.data,xlab="x1",ylab="x2",pch=16)
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The Assistments Project: http://www.assistments.org

• Web-based tutoring program developed by Carnegie Mellon

University, Carnegie Learning, and Worcester Polytechnic Institute

• Blends tutoring “assistance” with “assessment” reporting

• Over 4000 students in Massachusetts and Pennsylvania utilized the

system in 2007-2008

• System currently tracks/reports on about 120 skills per grade level

Goals:

• Help prepare students for end-of-year exams, e.g. MCAS

• Help teachers identify weaknesses/strengths in their students

and in their curriculum

• Allow teachers to use their time more effectively

• Help researchers discover how students learn
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Teachers can build questions or select from problem test banks.

Students are assigned a set of questions online for practice.

Each question coded as a main, broken up into scaffolds, one per skill.

The student can

• Attempt to answer

• Ask for a hint

If the student is incorrect

• scaffold questions start

• students are prompted to answer steps

• after hints exhausted, system provides the answer

System tracks which scaffold questions students answer correctly, how

many hints they need, how long it takes, and many other variables.
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The results all get summarized in several types of reports: teacher,

class, student, skill, etc; online access to users, can study how they learn
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Common goal: estimate skill mastery

Long story short: often use cognitive diagnosis models to estimate

student skill mastery profiles, but high dim data makes this difficult.

Ex: Dynamic Inputs, Noisy “and” Gate model (DINA):

P (Yij = 1|ηij , sj , gj) = (1− sj)
ηijg

1−ηij

j

where ηij =
∏K

k=1 α
qjk
ik ; αik = 1 if student i has skill k, = 0 if not.

2K possible skill set profiles αi ∈ {0, 1}K (e.g. α1 = (0, 1, 0)).

True skill set profiles are corners of a K-dim hypercube.
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The data we can collect:

• Student response matrix (Y )

Y =











y1,1 y1,2 . . . y1,J
...

. . .
...

yN,1 yN,2 . . . yN,J











=











1 0 . . . 1
...

. . .
...

NA 1 . . . 0











N students, J items

Yij = 1 if student i answered item j correctly; 0 if incorrectly;

NA if not answered

• Assignment matrix of skills needed for each item (Q)

Q =











q1,1 q1,2 . . . q1,K
...

. . .
...

qJ,1 qJ,2 . . . qJ,K











=











1 0 . . . 0
...

. . .
...

0 1 . . . 1











J items, K skills

Qjk = 1 if item j requires skill k; 0 if not.

One estimate for αik is the Capability Matrix (Nugent, Ayers, Dean)

Bik =

∑J
j=1 IYij 6=NA · Yij · qjk
∑J

j=1 IYij 6=NA · qjk

Bik: % of items student i answered correctly for skill k.

Bik scales for the number of items seen; reduces influence of

over-represented skills; incorporates missingness

Bik = α̂ik ∈ {0, 1}

Maps students into a unit hyper-cube (like CDM estimates).
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Datasets:

• Assistments: 551 students, 3 Skills (Evaluating Functions,

Multiplication, Unit Conversion)
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assist3d<-read.table("assist3d.txt")

dim(assist3d) ##551 students; 3 var

library(scatterplot3d) ##need to install

scatterplot3d(assist3d,xlab="....",ylab="....",zlab="....",pch=16)

library(rgl) ##need to install

plot3d(assist3d,xlab="....",ylab="...n",zlab="...",size=5)

• Assistments: 344 students; 13 skills

assist13d<-read.table("assist13d.txt")

dim(assist13d) ##344 students; 13 var

pairs(assist13d) ##scatterplots for each pair of variables

• Assistments: 1000 students; 20 skills

assist20d<-read.table("assist20d.txt")

dim(assist20d) ##1000 students; 20 var

pairs(assist20d[,1:10]) ##just looking at a few

table(assist20d[,1]); table(assist20d[,2]); table(assist20d[,3])
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Looking for Group Structure in Data: Clustering

Goal: partition observations such that those in the same cluster are

“more similar” to each other than they are to those in other clusters

Characterizing a Group/Cluster: want to summarize the structure

• Center:

• Spread:

• Shape:

Also need an assignment list ; which observations belong to the cluster?

Distances/Dissimilarities

To understand/measure structure in a group of variables or feature

vectors, need an idea of how observations relate/compare to each other.

Notation:

Measuring Distance: Common to describe the relationship between

two observations by their “distance” or “dissimilarity”: d(i, j)

Properties of a Distance:
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Often expect d(i, j) to increase as obs become more different/dissimilar.

We store this information in a distance/dissimilarity matrix.

Euclidean Distance: commonly used distance; “as the crow flies”

Can sometimes visualize the structure in the distance matrix.

Heat Map: multicolored representation of a matrix of values; color

spectrum represents the range of values (e.g. red = low; yellow = high)

Why is the structure evident? What happens in practice?

What if obs are not ordered by group? What if there are outliers?

Potential issues with distances

• distance can change if measurement units change

• variables can have different scales and/or variances

Other distances: Manhattan (city block distance); L-infinity or

Maximum distance; Hamming distance among others
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Hierarchical Linkage Clustering

Hierarchical Partitioning: Agglomerative vs Divisive

(Agglomerative) Hierarchical Linkage Clustering: an algorithm

that links observations/groups in order of closeness in a hierarchically

linked structure; generates n possible partitions

This hierarchical structure is stored in a dendrogram.

We determine the clusters/partition by cutting the dendrogram.

Can be difficult to choose the partition when structure not obvious.
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Single Linkage: intergroup distance: smallest possible distance

Characterized by “chaining”, nearest neighbor effect, good at picking

out curvilinear/non-spherical groups

Complete Linkage: intergroup distance: largest possible distance

Characterized by splitting the data up into more compact subsets

Other types of Linkage:

• Average:

• Centroid:

• Ward’s

• Minimax Linkage (based on prototypes; less well known)

Can use any type of distance/dissimilarity;

in R, need to pass in a dist structure or a full distance matrix.

What kind of dissimilarities might we use?
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To group similar obs, some methods try to balance minimizing

within-cluster distance and maximizing between-cluster distance.

Within-Cluster Distance:

Between-Cluster Distance:

K-means: algorithm to partition obs into K spherical clusters

Measure “quality” of clusters with within-cluster squared-error criterion

Required: Set the number of clusters, K, in advance.

Given a set of K initial cluster centers, alternate between:

• Assign each observation to the closest center

• Recompute the centers given the current assignments

Stop when the cluster assignments/centers no longer change.
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Each step decreases the within-cluster criterion:

• Given the cluster centers:

• Given the current assignments:

In practice:

• First few steps correspond to large drops in the criterion;

later steps correspond to negligible drops.

• Use K randomly chosen observations as the starting centers

(but don’t have to; can choose specific centers)

• Have an idea of what K should be in advance

What if we don’t know K? How do we choose?

If we increase K, what happens to the within-cluster criterion?

We use an elbow graph to determine a “useful” K.

What do we look for in the elbow graph?
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K-means is also dependent on the set of starting centers you choose;

solutions can vary widely. How do we pick?

K-Means can be strongly influenced by outliers (since based on means).

K-Medoids: Partitioning around Medoids

Medoid: the observation in the data set (cluster) whose average distance

to all the other observations is minimal; not as susceptible to outliers

Given a starting set of K observations (medoids), alternate between:

• Assign each observation to the closest medoid.

• For each cluster, find the observation that corresponds to the lowest

criterion value for the cluster; reassign as medoid

until cluster assignments no longer change.

Much more computationally difficult; at each step, criterion has to be

optimized over all obs (which one is the new medoid?)
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So far, we have looked at distance-based approaches;

in contrast, we can adopt a statistical approach:

There are two subfields:

• Parametric

• Nonparametric

Model-Based (Parametric) Clustering: assumes that each population

subgroup has its own density; overall pop is weighted combination
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What type of densities do we fit?

EII VII EEI VEI EVI

VVI EEE EEV VEV VVV

Choosing the “Best” Model:

Pick the model that maximizes the Bayesian Information Criterion.
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Looking at a Two Group Mixture:

To fit the model, we need to estimate three sets of parameters:

In particular, the covariance matrix can be parameterized to dictate the

shapes, orientations, etc of the group densities.

The models are fit using the Expectation-Maximization Algorithm:

After the final model is chosen (by the BIC), the procedure returns:

• the name of the model

• the estimated means and covariance

• the estimated membership probabilities

• the cluster assignments
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Common assumption: each component represents a population group

If groups are not Gaussian, may overfit the number of components.
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Need to think about how you decide to merge components. Options?

What about Gaussian clusters with noise?

Two options:

In general, need to be careful about how you interpret the components

(whether or not they represent true groups in the population).
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Nonparametric Clustering:

Often we just associate groups with high frequency areas.

Groups in the population correspond to modes of the density p(x).

Gives the following definition: contiguous, densely populated areas of

feature space, sep- arated by contiguous, relatively empty regions

(Carmichael, George, Julius).

(a) (b)

(c) (d)
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NP Goal: find the modes of a density p(x) (or p̂(x)); assign observations

to the “domain of attraction” of a mode (contrast with MBC)

Finding Modes: associate presence of groups/modes with excess mass in

one area surrounded by low mass areas.

Level Sets of a Density:
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NP Goal: find the modes of a density p(x) (or p̂(x)); assign observations

to the “domain of attraction” of a mode; build cluster tree of p(x);

(NPEx.pdf)
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Unlike other clustering procedures, NP clustering is very dependent on

the density estimate p̂(x).

Each mode of the density estimate ⇐⇒ cluster/population group

Kernel Density Estimate: common nonparametric density estimate

Choice of kernel:

• Gaussian

• Epanechikov

• Biweight/Triweight

• Triangular

• Box

Choosing a Bandwidth: Often trying to minimize an error measure;

there are several reference rules (Scott or Silverman); could also use

cross-validation; open research problem, no “one size fits all” choice
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Assessing/Comparing the Clusterings

Could use percent correct to characterize our results (if had labels).

Advantages/disadvantages:

What if the clustering algorithm is not completely deterministic?

Several clustering comparison criteria we could use (also applies to

comparing a set of clusters to the truth); most are based on counting

the pairs of observations on which two clusterings agree/disagree.
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Fowlkes-Mallow Index: geometric mean of the probability that a pair of

points in Ck are also in the same cluster in C ′

Rand Index :

Adjusted Rand Index (ARI): motivated by seeing that RI does not

range over the entire [0,1] interval. (min(RI)> 0; RI tends toward 1)

Instead we adjust the index to have an expected value of zero under

random partitioning (independent clusterings) with a max value = 1.

Tends to give you credit for splitting a group into two clusters

Another way of thinking about percent correct is misclassification error :

(Information-theoretic point of view: entropy, mutual information, VI)
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Using the Criteria:

• You can never compare values from different criteria;

they measure different things

• We can compare the performance of two different clustering

algorithms by comparing each of them against the truth. Pick the

better one.

• Compare the stability of a non-deterministic procedure by repeating

several times and watching how the criteria change.

Visualization Diagnostics

Reminder of Model-Based Clustering:

After choosing our final model, each observation is assigned to the

cluster that corresponds to the highest membership probability (z).

Maximum Membership Probability :

Uncertainty Index:

What would the uncertainty vector look like for a “good” set of clusters?

What about a “bad” set of clusters?
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When looking at other types of methods, we need some kind of

“uncertainty measure”. What would it mean to be “well-assigned” ?

We want to quantify the “closeness” of an observation to any cluster:

Silhouette Measure:

Given assignments, we find the silhouette value si for each observation

(vector of length n); characterize cluster by its silhouette values
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Longitudinal/Trajectory Clustering

We’ve only been looking at structure for observations that only have

one set of measurements.

Sometimes observations may have sets of repeated measurements.

Can be characterized by a path or a trajectory. We’re often interested in

determining the “center trajectory” for a group of observations.

Can estimate the number of trajectories, the coordinates of the “center”

trajectories, and the probability of belonging to each trajectory.
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Notes:
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Notes:
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Review/Takeaways
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