Lecture Notes 15 Hypothesis Testing (Chapter 10)

1 Introduction

Let $X_1, \ldots, X_n \sim p_\theta(x)$. Suppose we we want to know if $\theta = \theta_0$ or not, where θ_0 is a specific value of θ . For example, if we are flipping a coin, we may want to know if the coin is fair; this corresponds to $p = 1/2$. If we are testing the effect of two drugs — whose means effects are θ_1 and θ_2 — we may be interested to know if there is no difference, which corresponds to $\theta_1 - \theta_2 = 0$.

We formalize this by stating a *null hypothesis* H_0 and an alternative hypothesis H_1 . For example:

$$
H_0: \theta = \theta_0 \quad \text{versus} \quad \theta \neq \theta_0.
$$

More generally, consider a parameter space Θ. We consider

$$
H_0: \theta \in \Theta_0
$$
 versus $H_1: \theta \in \Theta_1$

where $\Theta_0 \cap \Theta_1 = \emptyset$. If Θ_0 consists of a single point, we call this a *simple null hypothesis*. If Θ_0 consists of more than one point, we call this a *composite null hypothesis*.

Example 1 $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$.

$$
H_0: p = \frac{1}{2}
$$
 $H_1: p \neq \frac{1}{2}.$ \Box

The question is not whether H_0 is true or false. The question is whether there is sufficient evidence to reject H_0 , much like a court case. Our possible actions are: reject H_0 or retain (don't reject) H_0 .

Warning: Hypothesis testing should only be used when it is appropriate. Often times, people use hypothesis testing when it would be much more appropriate to use confidence intervals.

Notation: Let Φ be the cdf of a standard Normal random variable Z. For $0 < \alpha < 1$, let

$$
z_{\alpha} = \Phi^{-1}(1 - \alpha).
$$

Hence,

$$
P(Z > z_\alpha) = \alpha.
$$

Also, $P(Z < -z_\alpha) = \alpha$. In these notes we sometimes write $p(x; \theta)$ instead of $p_\theta(x)$.

2 Constructing Tests

Hypothesis testing involves the following steps:

- 1. Choose a test statistic $T_n = T_n(X_1, \ldots, X_n)$.
- 2. Choose a rejection region R.
- 3. If $T_n \in R$ we reject H_0 otherwise we retain H_0 .

Example 2 Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$. Suppose we test

$$
H_0: p = \frac{1}{2} \qquad H_1: p \neq \frac{1}{2}.
$$

Let $T_n = n^{-1} \sum_{i=1}^n X_i$ and $R = \{x_1, \ldots, x_n : |T_n(x_1, \ldots, x_n) - 1/2| > \delta\}$. So we reject H_0 if $|T_n - 1/2| > \delta.$

We need to choose T and R so that the test has good statistical properties. We will consider the following tests:

- 1. The Neyman-Pearson Test
- 2. The Wald test
- 3. The Likelihood Ratio Test (LRT)
- 4. The permutation test.

Before we discuss these methods, we first need to talk about how we evaluate tests.

3 Error Rates and Power

Suppose we reject H_0 when $(X_1, \ldots, X_n) \in R$. Define the *power function* by

$$
\beta(\theta) = P_{\theta}(X_1, \ldots, X_n \in R).
$$

We want $\beta(\theta)$ to be small when $\theta \in \Theta_0$ and we want $\beta(\theta)$ to be large when $\theta \in \Theta_1$. The general strategy is:

1. Fix $\alpha \in [0,1]$.

2. Now try to maximize $\beta(\theta)$ for $\theta \in \Theta_1$ subject to $\beta(\theta) \leq \alpha$ for $\theta \in \Theta_0$.

We need the following definitions. A test is size α if

$$
\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha.
$$

Example 3 $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$ with σ^2 known. Suppose we test

$$
H_0: \theta = \theta_0, \qquad H_1: \theta > \theta_0.
$$

This is called a **one-sided alternative**. Suppose we reject H_0 if $T_n > c$ where

$$
T_n = \frac{\overline{X}_n - \theta_0}{\sigma / \sqrt{n}}.
$$

Then

$$
\beta(\theta) = P_{\theta} \left(\frac{\overline{X}_n - \theta_0}{\sigma/\sqrt{n}} > c \right) = P_{\theta} \left(\frac{\overline{X}_n - \theta}{\sigma/\sqrt{n}} > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} \right)
$$

$$
= P \left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} \right) 1 - \Phi \left(c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} \right)
$$

where Φ is the cdf of a standard Normal and $Z \sim \Phi$. Now

$$
\sup_{\theta \in \Theta_0} \beta(\theta) = \beta(\theta_0) = 1 - \Phi(c).
$$

To get a size α test, set $1 - \Phi(c) = \alpha$ so that

$$
c=z_\alpha
$$

where $z_{\alpha} = \Phi^{-1}(1-\alpha)$. Our test is: reject H_0 when

$$
T_n = \frac{\overline{X}_n - \theta_0}{\sigma/\sqrt{n}} > z_\alpha.
$$

Example 4 $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$ with σ^2 known. Suppose

$$
H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0.
$$

This is called a **two-sided** alternative. We will reject H_0 if $|T_n| > c$ where T_n is defined as before. Now

$$
\beta(\theta) = P_{\theta}(T_n < -c) + P_{\theta}(T_n > c)
$$

\n
$$
= P_{\theta}\left(\frac{\overline{X}_n - \theta_0}{\sigma/\sqrt{n}} < -c\right) + P_{\theta}\left(\frac{\overline{X}_n - \theta_0}{\sigma/\sqrt{n}} > c\right)
$$

\n
$$
= P\left(Z < -c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) + P\left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)
$$

\n
$$
= \Phi\left(-c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) + 1 - \Phi\left(c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)
$$

\n
$$
= \Phi\left(-c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) + \Phi\left(-c - \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)
$$

since $\Phi(-x) = 1 - \Phi(x)$. The size is

$$
\beta(\theta_0) = 2\Phi(-c).
$$

To get a size α test we set $2\Phi(-c) = \alpha$ so that $c = -\Phi^{-1}(\alpha/2) = \Phi^{-1}(1 - \alpha/2) = z_{\alpha/2}$. The test is: reject H_0 when

$$
|T| = \left| \frac{\overline{X}_n - \theta_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}.
$$

4 The Neyman-Pearson Test

(Not in the book.) Let \mathcal{C}_{α} denote all level α tests. A test in \mathcal{C}_{α} with power function β is uniformly most powerful (UMP) if the following holds: if β' is the power function of any other test in \mathcal{C}_{α} then $\beta(\theta) \leq \beta'(\theta)$ for all $\theta \in \Theta_1$.

Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$. (Simple null and simple alternative.)

Theorem 5 Let $L(\theta) = p(X_1, \ldots, X_n; \theta)$ and

$$
T_n = \frac{L(\theta_1)}{L(\theta_0)}.
$$

Suppose we reject H_0 if $T_n > k$ where k is chosen so that

$$
P_{\theta_0}(X^n \in R) = \alpha.
$$

This test is a UMP level α test.

The Neyman-Pearson test is quite limited because it can be used only for testing a simple null versus a simple alternative. So it does not get used in practice very often. But it is important from a conceptual point of view.

5 The Wald Test

Let

$$
T_n = \frac{\hat{\theta}_n - \theta_0}{\text{se}}
$$

where $\hat{\theta}$ is an asymptotically Normal estimator and se is the estimated standard error of $\hat{\theta}$ (or the standard error under H_0). Under H_0 , $T_n \rightsquigarrow N(0, 1)$. Hence, an asymptotic level α test is to reject when $|T_n| > z_{\alpha/2}$. That is

$$
P_{\theta_0}(|T_n| > z_\alpha) \to \alpha.
$$

For example, with Bernoulli data, to test $H_0: p = p_0$,

$$
T_n = \frac{\widehat{p} - p_0}{\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}}.
$$

You can also use

$$
T_n = \frac{\widehat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}.
$$

In other words, to compute the standard error, you can replace θ with an estimate $\widehat{\theta}$ or by the null value θ_0 .

6 The Likelihood Ratio Test (LRT)

This test is simple: reject H_0 if $\lambda(x_1, \ldots, x_n) \leq c$ where

$$
\lambda(x_1,\ldots,x_n)=\frac{\sup_{\theta\in\Theta_0}L(\theta)}{\sup_{\theta\in\Theta}L(\theta)}=\frac{L(\theta_0)}{L(\widehat{\theta})}
$$

where $\widehat{\theta}_0$ maximizes $L(\theta)$ subject to $\theta \in \Theta_0$.

Example 6 $X_1, \ldots, X_n \sim N(\theta, 1)$. Suppose

$$
H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0.
$$

After some algebra,

$$
\lambda = \exp\left\{-\frac{n}{2}(\overline{X}_n - \theta_0)^2\right\}.
$$

So

$$
R = \{x : \lambda \le c\} = \{x : |\overline{X} - \theta_0| \ge c'\}
$$

where $c' = \sqrt{-2 \log c/n}$. Choosing c' to make this level α gives: reject if $|T_n| > z_{\alpha/2}$ where $T_n =$ √ $\overline{n}(X - \theta_0)$ which is the test we constructed before.

Example 7 $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$. Suppose

$$
H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0.
$$

Then

$$
\lambda(x_1,\ldots,x_n) = \frac{L(\theta_0,\widehat{\sigma}_0)}{L(\widehat{\theta},\widehat{\sigma})}
$$

where $\hat{\sigma}_0$ maximizes the likelihood subject to $\theta = \theta_0$.

Exercise: Show that $\lambda(x_1, \ldots, x_n) < c$ corresponds to rejecting when $|T_n| > k$ for some constant k where

$$
T_n = \frac{X_n - \theta_0}{S / \sqrt{n}}.
$$

Under H_0 , T_n has a t-distribution with $n-1$ degrees of freedom. So the final test is: reject H_0 if

$$
|T_n| > t_{n-1,\alpha/2}.
$$

This is called Student's t-test. It was invented by William Gosset working at Guiness Breweries and writing under the pseudonym Student.

We can simplify the LRT by using an asymptotic approximation. First, some notation:

Notation: Let $W \sim \chi_p^2$. Define $\chi_{p,\alpha}^2$ by $P(W > \chi^2_{p,\alpha}) = \alpha.$

Theorem 8 Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ where $\theta \in \mathbb{R}$. Under H_0 ,

$$
-2\log\lambda(X_1,\ldots,X_n)\leadsto\chi_1^2.
$$

Hence, if we let $T_n = -2 \log \lambda(X^n)$ then

$$
P_{\theta_0}(T_n > \chi^2_{1,\alpha}) \to \alpha
$$

as $n \to \infty$.

Proof. Using a Taylor expansion:

$$
\ell(\theta) \approx \ell(\widehat{\theta}) + \ell'(\widehat{\theta})(\theta - \widehat{\theta}) + \ell''(\widehat{\theta})\frac{(\theta - \widehat{\theta})^2}{2} = \ell(\widehat{\theta}) + \ell''(\widehat{\theta})\frac{(\theta - \widehat{\theta})^2}{2}
$$

and so

$$
-2\log \lambda(x_1, \dots, x_n) = 2\ell(\widehat{\theta}) - 2\ell(\theta_0)
$$

\n
$$
\approx 2\ell(\widehat{\theta}) - 2\ell(\widehat{\theta}) - \ell''(\widehat{\theta})(\theta - \widehat{\theta})^2 = -\ell''(\widehat{\theta})(\theta - \widehat{\theta})^2
$$

\n
$$
= \frac{-\ell''(\widehat{\theta})}{I_n(\theta_0)} I_n(\theta_0) (\sqrt{n}(\widehat{\theta} - \theta_0))^2 = A_n \times B_n.
$$

Now $A_n \xrightarrow{P} 1$ by the WLLN and $\sqrt{B_n} \rightsquigarrow N(0, 1)$. The result follows by Slutsky's theorem. \blacksquare

Example 9 $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$. We want to test $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda \neq \lambda_0$. Then

$$
-2\log \lambda(x^n) = 2n[(\lambda_0 - \widehat{\lambda}) - \widehat{\lambda}\log(\lambda_0/\widehat{\lambda})].
$$

We reject H_0 when $-2 \log \lambda(x^n) > \chi^2_{1,\alpha}$.

Now suppose that $\theta = (\theta_1, \dots, \theta_k)$. Suppose that $H_0 : \theta \in \Theta_0$ fixes some of the parameters. Then, under conditions,

$$
T_n = -2\log \lambda(X_1,\ldots,X_n) \rightsquigarrow \chi^2_{\nu}
$$

where

$$
\nu = \dim(\Theta) - \dim(\Theta_0).
$$

Therefore, an asymptotic level α test is: reject H_0 when $T_n > \chi^2_{\nu,\alpha}$.

Example 10 Consider a multinomial with $\theta = (p_1, \ldots, p_5)$. So

$$
L(\theta) = p_1^{y_1} \cdots p_5^{y_5}.
$$

Suppose we want to test

 $H_0: p_1 = p_2 = p_3$ and $p_4 = p_5$

versus the alternative that H_0 is false. In this case

$$
\nu = 4 - 1 = 3.
$$

The LRT test statistic is

$$
\lambda(x_1, \ldots, x_n) = \frac{\prod_{i=1}^5 \widehat{p}_{0j}^{Y_j}}{\prod_{i=1}^5 \widehat{p}_j^{Y_j}}
$$

where $\hat{p}_j = Y_j/n$, $\hat{p}_{10} = \hat{p}_{20} = \hat{p}_{30} = (Y_1 + Y_2 + Y_3)/n$, $\hat{p}_{40} = \hat{p}_{50} = (1 - 3\hat{p}_{10})/2$.
These solentians are an $n/91$, Make sure we wedenteed them. Now we major H, it These calculations are on p 491. Make sure you understand them. Now we reject H_0 if $-2\lambda(X_1,\ldots,X_n) > \chi^2_{3,\alpha}$.

7 p-values

When we test at a given level α we will reject or not reject. It is useful to summarize what levels we would reject at and what levels we woud not reject at.

The p-value is the smallest α at which we would reject H_0 .

In other words, we reject at all $\alpha \geq p$. So, if the pvalue is 0.03, then we would reject at $\alpha = 0.05$ but not at $\alpha = 0.01$.

Hence, to test at level α when $p < \alpha$.

Theorem 11 Suppose we have a test of the form: reject when $T(X_1, \ldots, X_n) > c$. Then the p-value is

$$
p = \sup_{\theta \in \Theta_0} P_{\theta}(T_n(X_1, \ldots, X_n) \geq T_n(x_1, \ldots, x_n))
$$

where x_1, \ldots, x_n are the observed data and $X_1, \ldots, X_n \sim p_{\theta_0}$.

Example 12 $X_1, \ldots, X_n \sim N(\theta, 1)$. Test that $H_0 : \theta = \theta_0$ versus $H_1 : \theta \neq \theta_0$. We reject when $|T_n|$ is large, where $T_n = \sqrt{n}(X_n - \theta_0)$. Let t_n be the obsrved value of T_n . Let $Z \sim N(0, 1)$. Then,

$$
p = P_{\theta_0}(|\sqrt{n}(\overline{X}_n - \theta_0)| > t_n) = P(|Z| > t_n) = 2\Phi(-|t_n|).
$$

Theorem 13 Under H_0 , $p \sim \text{Unif}(0, 1)$.

Important. Note that p is NOT equal to $P(H_0|X_1,\ldots,X_n)$. The latter is a Bayesian quantity which we will discuss later.

8 The Permutation Test

This is a very cool test. It is distribution free and it does not involve any asymptotic approximations.

Suppose we have data

$$
X_1,\ldots,X_n \sim F
$$

and

$$
Y_1,\ldots,Y_m\sim G.
$$

We want to test:

$$
H_0: F = G \quad \text{versus} \quad H_1: F \neq G.
$$

Let

$$
Z=(X_1,\ldots,X_n,Y_1,\ldots,Y_m).
$$

Create labels

$$
L = (\underbrace{1, \ldots, 1}_{n \text{ values}}, \underbrace{2, \ldots, 2}_{m \text{ values}}).
$$

A test statistic can be written as a function of Z and L. For example, if

$$
T = |\overline{X}_n - \overline{Y}_m|
$$

then we can write

$$
T = \left| \frac{\sum_{i=1}^{N} Z_i I(L_i = 1)}{\sum_{i=1}^{N} I(L_i = 1)} - \frac{\sum_{i=1}^{N} Z_i I(L_i = 2)}{\sum_{i=1}^{N} I(L_i = 2)} \right|
$$

where $N = n + m$. So we write $T = g(L, Z)$.

Define

$$
p = \frac{1}{N!} \sum_{\pi} I(g(L_{\pi}, Z) > g(L, Z))
$$

where L_{π} is a permutation of the labels and the sum is over all permutations. Under H_0 , permuting the labels does not change the distribution. In other words, $g(L, Z)$ has an equal chance of having any rank among all the permuted values. That is, under H_0 , \approx Unif(0, 1) and if we reject when $p < \alpha$, then we have a level α test.

Summing over all permutations is infeasible. But it suffices to use a random sample of permutations. So we do this:

- 1. Compute a random permutation of the labels and compute W . Do this K times giving values $T^{(1)}, \ldots, T^{(K)}$.
- 2. Compute the p-value

$$
\frac{1}{K} \sum_{j=1}^{K} I(T^{(j)} > T).
$$