
Lecture Notes 15
Hypothesis Testing (Chapter 10)

1 Introduction

Let X1, . . . , Xn ∼ pθ(x). Suppose we we want to know if θ = θ0 or not, where θ0 is a specific
value of θ. For example, if we are flipping a coin, we may want to know if the coin is fair;
this corresponds to p = 1/2. If we are testing the effect of two drugs — whose means effects
are θ1 and θ2 — we may be interested to know if there is no difference, which corresponds
to θ1 − θ2 = 0.

We formalize this by stating a null hypothesis H0 and an alternative hypothesis H1. For
example:

H0 : θ = θ0 versus θ 6= θ0.

More generally, consider a parameter space Θ. We consider

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

where Θ0 ∩Θ1 = ∅. If Θ0 consists of a single point, we call this a simple null hypothesis. If
Θ0 consists of more than one point, we call this a composite null hypothesis.

Example 1 X1, . . . , Xn ∼ Bernoulli(p).

H0 : p =
1

2
H1 : p 6= 1

2
. �

The question is not whether H0 is true or false. The question is whether there is sufficient
evidence to reject H0, much like a court case. Our possible actions are: reject H0 or retain
(don’t reject) H0.

Decision
Retain H0 Reject H0

H0 true
√

Type I error
(false positive)

H1 true Type II error
√

(false negative)

Warning: Hypothesis testing should only be used when it is appropriate. Of-
ten times, people use hypothesis testing when it would be much more appropriate
to use confidence intervals.
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Notation: Let Φ be the cdf of a standard Normal random variable Z. For 0 < α < 1,
let

zα = Φ−1(1− α).

Hence,
P (Z > zα) = α.

Also, P (Z < −zα) = α. In these notes we sometimes write p(x; θ) instead of pθ(x).

2 Constructing Tests

Hypothesis testing involves the following steps:

1. Choose a test statistic Tn = Tn(X1, . . . , Xn).

2. Choose a rejection region R.

3. If Tn ∈ R we reject H0 otherwise we retain H0.

Example 2 Let X1, . . . , Xn ∼ Bernoulli(p). Suppose we test

H0 : p =
1

2
H1 : p 6= 1

2
.

Let Tn = n−1
∑n

i=1 Xi and R = {x1, . . . , xn : |Tn(x1, . . . , xn)− 1/2| > δ}. So we reject H0 if
|Tn − 1/2| > δ.

We need to choose T and R so that the test has good statistical properties. We will
consider the following tests:

1. The Neyman-Pearson Test

2. The Wald test

3. The Likelihood Ratio Test (LRT)

4. The permutation test.

Before we discuss these methods, we first need to talk about how we evaluate tests.

3 Error Rates and Power

Suppose we reject H0 when (X1, . . . , Xn) ∈ R. Define the power function by

β(θ) = Pθ(X1, . . . , Xn ∈ R).

We want β(θ) to be small when θ ∈ Θ0 and we want β(θ) to be large when θ ∈ Θ1.
The general strategy is:

1. Fix α ∈ [0, 1].
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2. Now try to maximize β(θ) for θ ∈ Θ1 subject to β(θ) ≤ α for θ ∈ Θ0.

We need the following definitions. A test is size α if

sup
θ∈Θ0

β(θ) ≤ α.

Example 3 X1, . . . , Xn ∼ N(θ, σ2) with σ2 known. Suppose we test

H0 : θ = θ0, H1 : θ > θ0.

This is called a one-sided alternative. Suppose we reject H0 if Tn > c where

Tn =
Xn − θ0

σ/
√
n
.

Then

β(θ) = Pθ

(
Xn − θ0

σ/
√
n

> c

)
= Pθ

(
Xn − θ
σ/
√
n
> c+

θ0 − θ
σ/
√
n

)
= P

(
Z > c+

θ0 − θ
σ/
√
n

)
1− Φ

(
c+

θ0 − θ
σ/
√
n

)
where Φ is the cdf of a standard Normal and Z ∼ Φ. Now

sup
θ∈Θ0

β(θ) = β(θ0) = 1− Φ(c).

To get a size α test, set 1− Φ(c) = α so that

c = zα

where zα = Φ−1(1− α). Our test is: reject H0 when

Tn =
Xn − θ0

σ/
√
n

> zα.

Example 4 X1, . . . , Xn ∼ N(θ, σ2) with σ2 known. Suppose

H0 : θ = θ0, H1 : θ 6= θ0.

This is called a two-sided alternative. We will reject H0 if |Tn| > c where Tn is defined as
before. Now

β(θ) = Pθ(Tn < −c) + Pθ(Tn > c)

= Pθ

(
Xn − θ0

σ/
√
n

< −c
)

+ Pθ

(
Xn − θ0

σ/
√
n

> c

)
= P

(
Z < −c+

θ0 − θ
σ/
√
n

)
+ P

(
Z > c+

θ0 − θ
σ/
√
n

)
= Φ

(
−c+

θ0 − θ
σ/
√
n

)
+ 1− Φ

(
c+

θ0 − θ
σ/
√
n

)
= Φ

(
−c+

θ0 − θ
σ/
√
n

)
+ Φ

(
−c− θ0 − θ

σ/
√
n

)
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since Φ(−x) = 1− Φ(x). The size is

β(θ0) = 2Φ(−c).

To get a size α test we set 2Φ(−c) = α so that c = −Φ−1(α/2) = Φ−1(1− α/2) = zα/2. The
test is: reject H0 when

|T | =
∣∣∣∣Xn − θ0

σ/
√
n

∣∣∣∣ > zα/2.

4 The Neyman-Pearson Test

(Not in the book.) Let Cα denote all level α tests. A test in Cα with power function β is
uniformly most powerful (UMP) if the following holds: if β′ is the power function of
any other test in Cα then β(θ) ≤ β′(θ) for all θ ∈ Θ1.

Consider testing H0 : θ = θ0 versus H1 : θ = θ1. (Simple null and simple alternative.)

Theorem 5 Let L(θ) = p(X1, . . . , Xn; θ) and

Tn =
L(θ1)

L(θ0)
.

Suppose we reject H0 if Tn > k where k is chosen so that

Pθ0(X
n ∈ R) = α.

This test is a UMP level α test.

The Neyman-Pearson test is quite limited because it can be used only for testing a simple
null versus a simple alternative. So it does not get used in practice very often. But it is
important from a conceptual point of view.

5 The Wald Test

Let

Tn =
θ̂n − θ0

se

where θ̂ is an asymptotically Normal estimator and se is the estimated standard error of θ̂
(or the standard error under H0). Under H0, Tn  N(0, 1). Hence, an asymptotic level α
test is to reject when |Tn| > zα/2. That is

Pθ0(|Tn| > zα)→ α.

For example, with Bernoulli data, to test H0 : p = p0,

Tn =
p̂− p0√
p̂(1−p̂)
n

.
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You can also use

Tn =
p̂− p0√
p0(1−p0)

n

.

In other words, to compute the standard error, you can replace θ with an estimate θ̂ or by
the null value θ0.

6 The Likelihood Ratio Test (LRT)

This test is simple: reject H0 if λ(x1, . . . , xn) ≤ c where

λ(x1, . . . , xn) =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
=
L(θ̂0)

L(θ̂)

where θ̂0 maximizes L(θ) subject to θ ∈ Θ0.

Example 6 X1, . . . , Xn ∼ N(θ, 1). Suppose

H0 : θ = θ0, H1 : θ 6= θ0.

After some algebra,

λ = exp
{
−n

2
(Xn − θ0)2

}
.

So
R = {x : λ ≤ c} = {x : |X − θ0| ≥ c′}

where c′ =
√
−2 log c/n. Choosing c′ to make this level α gives: reject if |Tn| > zα/2 where

Tn =
√
n(X − θ0) which is the test we constructed before.

Example 7 X1, . . . , Xn ∼ N(θ, σ2). Suppose

H0 : θ = θ0, H1 : θ 6= θ0.

Then

λ(x1, . . . , xn) =
L(θ0, σ̂0)

L(θ̂, σ̂)

where σ̂0 maximizes the likelihood subject to θ = θ0.
Exercise: Show that λ(x1, . . . , xn) < c corresponds to rejecting when |Tn| > k for some

constant k where

Tn =
Xn − θ0

S/
√
n
.

Under H0, Tn has a t-distribution with n − 1 degrees of freedom. So the final test is:
reject H0 if

|Tn| > tn−1,α/2.

This is called Student’s t-test. It was invented by William Gosset working at Guiness Brew-
eries and writing under the pseudonym Student.
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We can simplify the LRT by using an asymptotic approximation. First, some notation:

Notation: Let W ∼ χ2
p. Define χ2

p,α by

P (W > χ2
p,α) = α.

Theorem 8 Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ ∈ R. Under H0,

−2 log λ(X1, . . . , Xn) χ2
1.

Hence, if we let Tn = −2 log λ(Xn) then

Pθ0(Tn > χ2
1,α)→ α

as n→∞.

Proof. Using a Taylor expansion:

`(θ) ≈ `(θ̂) + `′(θ̂)(θ − θ̂) + `′′(θ̂)
(θ − θ̂)2

2
= `(θ̂) + `′′(θ̂)

(θ − θ̂)2

2

and so

−2 log λ(x1, . . . , xn) = 2`(θ̂)− 2`(θ0)

≈ 2`(θ̂)− 2`(θ̂)− `′′(θ̂)(θ − θ̂)2 = −`′′(θ̂)(θ − θ̂)2

=
−`′′(θ̂)
In(θ0)

In(θ0)(
√
n(θ̂ − θ0))2 = An ×Bn.

Now An
P−→ 1 by the WLLN and

√
Bn  N(0, 1). The result follows by Slutsky’s theorem.

�

Example 9 X1, . . . , Xn ∼ Poisson(λ). We want to test H0 : λ = λ0 versus H1 : λ 6= λ0.
Then

−2 log λ(xn) = 2n[(λ0 − λ̂)− λ̂ log(λ0/λ̂)].

We reject H0 when −2 log λ(xn) > χ2
1,α.

Now suppose that θ = (θ1, . . . , θk). Suppose that H0 : θ ∈ Θ0 fixes some of the parame-
ters. Then, under conditions,

Tn = −2 log λ(X1, . . . , Xn) χ2
ν

where
ν = dim(Θ)− dim(Θ0).

Therefore, an asymptotic level α test is: reject H0 when Tn > χ2
ν,α.
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Example 10 Consider a multinomial with θ = (p1, . . . , p5). So

L(θ) = py11 · · · p
y5
5 .

Suppose we want to test
H0 : p1 = p2 = p3 and p4 = p5

versus the alternative that H0 is false. In this case

ν = 4− 1 = 3.

The LRT test statistic is

λ(x1, . . . , xn) =

∏5
i=1 p̂

Yj
0j∏5

i=1 p̂
Yj
j

where p̂j = Yj/n, p̂10 = p̂20 = p̂30 = (Y1 + Y2 + Y3)/n, p̂40 = p̂50 = (1 − 3p̂10)/2.
These calculations are on p 491. Make sure you understand them. Now we reject H0 if
−2λ(X1, . . . , Xn) > χ2

3,α. �

7 p-values

When we test at a given level α we will reject or not reject. It is useful to summarize what
levels we would reject at and what levels we woud not reject at.

The p-value is the smallest α at which we would reject H0.

In other words, we reject at all α ≥ p. So, if the pvalue is 0.03, then we would reject at
α = 0.05 but not at α = 0.01.

Hence, to test at level α when p < α.

Theorem 11 Suppose we have a test of the form: reject when T (X1, . . . , Xn) > c. Then
the p-value is

p = sup
θ∈Θ0

Pθ(Tn(X1, . . . , Xn) ≥ Tn(x1, . . . , xn))

where x1, . . . , xn are the observed data and X1, . . . , Xn ∼ pθ0.

Example 12 X1, . . . , Xn ∼ N(θ, 1). Test that H0 : θ = θ0 versus H1 : θ 6= θ0. We
reject when |Tn| is large, where Tn =

√
n(Xn − θ0). Let tn be the obsrved value of Tn. Let

Z ∼ N(0, 1). Then,

p = Pθ0
(
|
√
n(Xn − θ0)| > tn

)
= P (|Z| > tn) = 2Φ(−|tn|).

Theorem 13 Under H0, p ∼ Unif(0, 1).

Important. Note that p is NOT equal to P (H0|X1, . . . , Xn). The latter is a Bayesian
quantity which we will discuss later.
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8 The Permutation Test

This is a very cool test. It is distribution free and it does not involve any asymptotic
approximations.

Suppose we have data
X1, . . . , Xn ∼ F

and
Y1, . . . , Ym ∼ G.

We want to test:
H0 : F = G versus H1 : F 6= G.

Let
Z = (X1, . . . , Xn, Y1, . . . , Ym).

Create labels
L = (1, . . . , 1︸ ︷︷ ︸

n values

, 2, . . . , 2︸ ︷︷ ︸
m values

).

A test statistic can be written as a function of Z and L. For example, if

T = |Xn − Y m|

then we can write

T =

∣∣∣∣∣
∑N

i=1 ZiI(Li = 1)∑N
i=1 I(Li = 1)

−
∑N

i=1 ZiI(Li = 2)∑N
i=1 I(Li = 2)

∣∣∣∣∣
where N = n+m. So we write T = g(L,Z).

Define

p =
1

N !

∑
π

I(g(Lπ, Z) > g(L,Z))

where Lπ is a permutation of the labels and the sum is over all permutations. Under H0,
permuting the labels does not change the distribution. In other words, g(L,Z) has an equal
chance of having any rank among all the permuted values. That is, under H0, ≈ Unif(0, 1)
and if we reject when p < α, then we have a level α test.

Summing over all permutations is infeasible. But it suffices to use a random sample of
permutations. So we do this:

1. Compute a random permutation of the labels and compute W . Do this K times giving
values T (1), . . . , T (K).

2. Compute the p-value

1

K

K∑
j=1

I(T (j) > T ).
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