Lecture Notes 15 Hypothesis Testing (Chapter 10)

1 Introduction

Let $X_1, \ldots, X_n \sim p_{\theta}(x)$. Suppose we want to know if $\theta = \theta_0$ or not, where θ_0 is a specific value of θ . For example, if we are flipping a coin, we may want to know if the coin is fair; this corresponds to p = 1/2. If we are testing the effect of two drugs — whose means effects are θ_1 and θ_2 — we may be interested to know if there is no difference, which corresponds to $\theta_1 - \theta_2 = 0$.

We formalize this by stating a *null hypothesis* H_0 and an alternative hypothesis H_1 . For example:

$$H_0: \theta = \theta_0 \quad \text{versus} \quad \theta \neq \theta_0.$$

More generally, consider a parameter space Θ . We consider

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_1$

where $\Theta_0 \cap \Theta_1 = \emptyset$. If Θ_0 consists of a single point, we call this a *simple null hypothesis*. If Θ_0 consists of more than one point, we call this a *composite null hypothesis*.

Example 1 $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$.

$$H_0: p = \frac{1}{2}$$
 $H_1: p \neq \frac{1}{2}$. \square

The question is not whether H_0 is true or false. The question is whether there is sufficient evidence to reject H_0 , much like a court case. Our possible actions are: reject H_0 or retain (don't reject) H_0 .

	Decision	
	Retain H_0	Reject H_0
H_0 true		Type I error
		(false positive)
H_1 true	Type II error	
	(false negative)	

Warning: Hypothesis testing should only be used when it is appropriate. Often times, people use hypothesis testing when it would be much more appropriate to use confidence intervals.

Notation: Let Φ be the cdf of a standard Normal random variable Z. For $0 < \alpha < 1$, let

$$z_{\alpha} = \Phi^{-1}(1 - \alpha).$$

Hence,

$$P(Z > z_{\alpha}) = \alpha.$$

Also, $P(Z < -z_{\alpha}) = \alpha$. In these notes we sometimes write $p(x; \theta)$ instead of $p_{\theta}(x)$.

2 Constructing Tests

Hypothesis testing involves the following steps:

- 1. Choose a test statistic $T_n = T_n(X_1, \ldots, X_n)$.
- 2. Choose a rejection region R.
- 3. If $T_n \in R$ we reject H_0 otherwise we retain H_0 .

Example 2 Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$. Suppose we test

$$H_0: p = \frac{1}{2}$$
 $H_1: p \neq \frac{1}{2}$.

Let $T_n = n^{-1} \sum_{i=1}^n X_i$ and $R = \{x_1, \dots, x_n : |T_n(x_1, \dots, x_n) - 1/2| > \delta\}$. So we reject H_0 if $|T_n - 1/2| > \delta$.

We need to choose T and R so that the test has good statistical properties. We will consider the following tests:

- 1. The Neyman-Pearson Test
- 2. The Wald test
- 3. The Likelihood Ratio Test (LRT)
- 4. The permutation test.

Before we discuss these methods, we first need to talk about how we evaluate tests.

3 Error Rates and Power

Suppose we reject H_0 when $(X_1, \ldots, X_n) \in R$. Define the power function by

$$\beta(\theta) = P_{\theta}(X_1, \dots, X_n \in R).$$

We want $\beta(\theta)$ to be small when $\theta \in \Theta_0$ and we want $\beta(\theta)$ to be large when $\theta \in \Theta_1$. The general strategy is:

1. Fix $\alpha \in [0, 1]$.

2. Now try to maximize $\beta(\theta)$ for $\theta \in \Theta_1$ subject to $\beta(\theta) \leq \alpha$ for $\theta \in \Theta_0$.

We need the following definitions. A test is size α if

$$\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$$

Example 3 $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$ with σ^2 known. Suppose we test

$$H_0: \theta = \theta_0, \qquad H_1: \theta > \theta_0.$$

This is called a one-sided alternative. Suppose we reject H_0 if $T_n > c$ where

$$T_n = \frac{\overline{X}_n - \theta_0}{\sigma / \sqrt{n}}.$$

Then

$$\begin{split} \beta(\theta) &= P_{\theta}\left(\frac{\overline{X}_n - \theta_0}{\sigma/\sqrt{n}} > c\right) = P_{\theta}\left(\frac{\overline{X}_n - \theta}{\sigma/\sqrt{n}} > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) \\ &= P\left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) 1 - \Phi\left(c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) \end{split}$$

where Φ is the cdf of a standard Normal and $Z \sim \Phi$. Now

$$\sup_{\theta \in \Theta_0} \beta(\theta) = \beta(\theta_0) = 1 - \Phi(c).$$

To get a size α test, set $1 - \Phi(c) = \alpha$ so that

$$c=z_{\alpha}$$

where $z_{\alpha} = \Phi^{-1}(1-\alpha)$. Our test is: reject H_0 when

$$T_n = \frac{\overline{X}_n - \theta_0}{\sigma/\sqrt{n}} > z_{\alpha}.$$

Example 4 $X_1, ..., X_n \sim N(\theta, \sigma^2)$ with σ^2 known. Suppose

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0.$$

This is called a two-sided alternative. We will reject H_0 if $|T_n| > c$ where T_n is defined as before. Now

$$\beta(\theta) = P_{\theta}(T_n < -c) + P_{\theta}(T_n > c)$$

$$= P_{\theta}\left(\frac{\overline{X}_n - \theta_0}{\sigma/\sqrt{n}} < -c\right) + P_{\theta}\left(\frac{\overline{X}_n - \theta_0}{\sigma/\sqrt{n}} > c\right)$$

$$= P\left(Z < -c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) + P\left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

$$= \Phi\left(-c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) + 1 - \Phi\left(c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

$$= \Phi\left(-c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right) + \Phi\left(-c - \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

since $\Phi(-x) = 1 - \Phi(x)$. The size is

$$\beta(\theta_0) = 2\Phi(-c).$$

To get a size α test we set $2\Phi(-c) = \alpha$ so that $c = -\Phi^{-1}(\alpha/2) = \Phi^{-1}(1 - \alpha/2) = z_{\alpha/2}$. The test is: reject H_0 when

$$|T| = \left| \frac{\overline{X}_n - \theta_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}.$$

4 The Neyman-Pearson Test

(Not in the book.) Let \mathcal{C}_{α} denote all level α tests. A test in \mathcal{C}_{α} with power function β is **uniformly most powerful (UMP)** if the following holds: if β' is the power function of any other test in \mathcal{C}_{α} then $\beta(\theta) \leq \beta'(\theta)$ for all $\theta \in \Theta_1$.

Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$. (Simple null and simple alternative.)

Theorem 5 Let $L(\theta) = p(X_1, \dots, X_n; \theta)$ and

$$T_n = \frac{L(\theta_1)}{L(\theta_0)}.$$

Suppose we reject H_0 if $T_n > k$ where k is chosen so that

$$P_{\theta_0}(X^n \in R) = \alpha.$$

This test is a UMP level α test.

The Neyman-Pearson test is quite limited because it can be used only for testing a simple null versus a simple alternative. So it does not get used in practice very often. But it is important from a conceptual point of view.

5 The Wald Test

Let

$$T_n = \frac{\widehat{\theta}_n - \theta_0}{\text{se}}$$

where $\widehat{\theta}$ is an asymptotically Normal estimator and se is the estimated standard error of $\widehat{\theta}$ (or the standard error under H_0). Under H_0 , $T_n \rightsquigarrow N(0,1)$. Hence, an asymptotic level α test is to reject when $|T_n| > z_{\alpha/2}$. That is

$$P_{\theta_0}(|T_n| > z_\alpha) \to \alpha.$$

For example, with Bernoulli data, to test $H_0: p = p_0$,

$$T_n = \frac{\widehat{p} - p_0}{\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}}.$$

You can also use

$$T_n = \frac{\widehat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}.$$

In other words, to compute the standard error, you can replace θ with an estimate $\widehat{\theta}$ or by the null value θ_0 .

6 The Likelihood Ratio Test (LRT)

This test is simple: reject H_0 if $\lambda(x_1, \ldots, x_n) \leq c$ where

$$\lambda(x_1, \dots, x_n) = \frac{\sup_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \in \Theta} L(\theta)} = \frac{L(\widehat{\theta}_0)}{L(\widehat{\theta})}$$

where $\widehat{\theta}_0$ maximizes $L(\theta)$ subject to $\theta \in \Theta_0$.

Example 6 $X_1, \ldots, X_n \sim N(\theta, 1)$. Suppose

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0.$$

After some algebra,

$$\lambda = \exp\left\{-\frac{n}{2}(\overline{X}_n - \theta_0)^2\right\}.$$

So

$$R = \{x : \lambda \le c\} = \{x : |\overline{X} - \theta_0| \ge c'\}$$

where $c' = \sqrt{-2 \log c/n}$. Choosing c' to make this level α gives: reject if $|T_n| > z_{\alpha/2}$ where $T_n = \sqrt{n}(\overline{X} - \theta_0)$ which is the test we constructed before.

Example 7 $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$. Suppose

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0.$$

Then

$$\lambda(x_1,\ldots,x_n) = \frac{L(\theta_0,\widehat{\sigma}_0)}{L(\widehat{\theta},\widehat{\sigma})}$$

where $\widehat{\sigma}_0$ maximizes the likelihood subject to $\theta = \theta_0$.

Exercise: Show that $\lambda(x_1, \ldots, x_n) < c$ corresponds to rejecting when $|T_n| > k$ for some constant k where

$$T_n = \frac{\overline{X}_n - \theta_0}{S/\sqrt{n}}.$$

Under H_0 , T_n has a t-distribution with n-1 degrees of freedom. So the final test is: reject H_0 if

$$|T_n| > t_{n-1,\alpha/2}.$$

This is called Student's t-test. It was invented by William Gosset working at Guiness Breweries and writing under the pseudonym Student.

We can simplify the LRT by using an asymptotic approximation. First, some notation:

Notation: Let $W \sim \chi_p^2$. Define $\chi_{p,\alpha}^2$ by

$$P(W > \chi_{p,\alpha}^2) = \alpha.$$

Theorem 8 Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ where $\theta \in \mathbb{R}$. Under H_0 ,

$$-2\log\lambda(X_1,\ldots,X_n)\rightsquigarrow\chi_1^2.$$

Hence, if we let $T_n = -2 \log \lambda(X^n)$ then

$$P_{\theta_0}(T_n > \chi^2_{1,\alpha}) \to \alpha$$

as $n \to \infty$.

Proof. Using a Taylor expansion:

$$\ell(\theta) \approx \ell(\widehat{\theta}) + \ell'(\widehat{\theta})(\theta - \widehat{\theta}) + \ell''(\widehat{\theta})\frac{(\theta - \widehat{\theta})^2}{2} = \ell(\widehat{\theta}) + \ell''(\widehat{\theta})\frac{(\theta - \widehat{\theta})^2}{2}$$

and so

$$-2\log\lambda(x_1,\ldots,x_n) = 2\ell(\widehat{\theta}) - 2\ell(\theta_0)$$

$$\approx 2\ell(\widehat{\theta}) - 2\ell(\widehat{\theta}) - \ell''(\widehat{\theta})(\theta - \widehat{\theta})^2 = -\ell''(\widehat{\theta})(\theta - \widehat{\theta})^2$$

$$= \frac{-\ell''(\widehat{\theta})}{I_n(\theta_0)}I_n(\theta_0)(\sqrt{n}(\widehat{\theta} - \theta_0))^2 = A_n \times B_n.$$

Now $A_n \xrightarrow{P} 1$ by the WLLN and $\sqrt{B_n} \rightsquigarrow N(0,1)$. The result follows by Slutsky's theorem.

Example 9 $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$. We want to test $H_0: \lambda = \lambda_0$ versus $H_1: \lambda \neq \lambda_0$. Then

$$-2\log \lambda(x^n) = 2n[(\lambda_0 - \widehat{\lambda}) - \widehat{\lambda}\log(\lambda_0/\widehat{\lambda})].$$

We reject H_0 when $-2 \log \lambda(x^n) > \chi_{1,\alpha}^2$.

Now suppose that $\theta = (\theta_1, \dots, \theta_k)$. Suppose that $H_0 : \theta \in \Theta_0$ fixes some of the parameters. Then, under conditions,

$$T_n = -2\log\lambda(X_1,\ldots,X_n) \leadsto \chi_{\nu}^2$$

where

$$\nu = \dim(\Theta) - \dim(\Theta_0).$$

Therefore, an asymptotic level α test is: reject H_0 when $T_n > \chi^2_{\nu,\alpha}$.

Example 10 Consider a multinomial with $\theta = (p_1, \dots, p_5)$. So

$$L(\theta) = p_1^{y_1} \cdots p_5^{y_5}.$$

Suppose we want to test

$$H_0: p_1 = p_2 = p_3$$
 and $p_4 = p_5$

versus the alternative that H_0 is false. In this case

$$\nu = 4 - 1 = 3.$$

The LRT test statistic is

$$\lambda(x_1, \dots, x_n) = \frac{\prod_{i=1}^5 \widehat{p}_{0j}^{Y_j}}{\prod_{i=1}^5 \widehat{p}_{i}^{Y_j}}$$

where $\widehat{p}_j = Y_j/n$, $\widehat{p}_{10} = \widehat{p}_{20} = \widehat{p}_{30} = (Y_1 + Y_2 + Y_3)/n$, $\widehat{p}_{40} = \widehat{p}_{50} = (1 - 3\widehat{p}_{10})/2$. These calculations are on p 491. Make sure you understand them. Now we reject H_0 if $-2\lambda(X_1,\ldots,X_n) > \chi^2_{3,\alpha}$. \square

7 p-values

When we test at a given level α we will reject or not reject. It is useful to summarize what levels we would reject at and what levels we would not reject at.

The p-value is the smallest α at which we would reject H_0 .

In other words, we reject at all $\alpha \geq p$. So, if the pvalue is 0.03, then we would reject at $\alpha = 0.05$ but not at $\alpha = 0.01$.

Hence, to test at level α when $p < \alpha$.

Theorem 11 Suppose we have a test of the form: reject when $T(X_1, ..., X_n) > c$. Then the p-value is

$$p = \sup_{\theta \in \Theta_0} P_{\theta}(T_n(X_1, \dots, X_n) \ge T_n(x_1, \dots, x_n))$$

where x_1, \ldots, x_n are the observed data and $X_1, \ldots, X_n \sim p_{\theta_0}$.

Example 12 $X_1, \ldots, X_n \sim N(\theta, 1)$. Test that $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. We reject when $|T_n|$ is large, where $T_n = \sqrt{n}(\overline{X}_n - \theta_0)$. Let t_n be the observed value of T_n . Let $Z \sim N(0, 1)$. Then,

$$p = P_{\theta_0} (|\sqrt{n}(\overline{X}_n - \theta_0)| > t_n) = P(|Z| > t_n) = 2\Phi(-|t_n|).$$

Theorem 13 Under H_0 , $p \sim \text{Unif}(0,1)$.

Important. Note that p is NOT equal to $P(H_0|X_1,\ldots,X_n)$. The latter is a Bayesian quantity which we will discuss later.

8 The Permutation Test

This is a very cool test. It is distribution free and it does not involve any asymptotic approximations.

Suppose we have data

$$X_1,\ldots,X_n\sim F$$

and

$$Y_1, \ldots, Y_m \sim G$$
.

We want to test:

$$H_0: F = G$$
 versus $H_1: F \neq G$.

Let

$$Z = (X_1, \dots, X_n, Y_1, \dots, Y_m).$$

Create labels

$$L = (\underbrace{1, \dots, 1}_{n \text{ values}}, \underbrace{2, \dots, 2}_{m \text{ values}}).$$

A test statistic can be written as a function of Z and L. For example, if

$$T = |\overline{X}_n - \overline{Y}_m|$$

then we can write

$$T = \left| \frac{\sum_{i=1}^{N} Z_i I(L_i = 1)}{\sum_{i=1}^{N} I(L_i = 1)} - \frac{\sum_{i=1}^{N} Z_i I(L_i = 2)}{\sum_{i=1}^{N} I(L_i = 2)} \right|$$

where N = n + m. So we write T = g(L, Z).

Define

$$p = \frac{1}{N!} \sum_{\pi} I(g(L_{\pi}, Z) > g(L, Z))$$

where L_{π} is a permutation of the labels and the sum is over all permutations. Under H_0 , permuting the labels does not change the distribution. In other words, g(L, Z) has an equal chance of having any rank among all the permuted values. That is, under H_0 , \approx Unif(0,1) and if we reject when $p < \alpha$, then we have a level α test.

Summing over all permutations is infeasible. But it suffices to use a random sample of permutations. So we do this:

- 1. Compute a random permutation of the labels and compute W. Do this K times giving values $T^{(1)}, \ldots, T^{(K)}$.
- 2. Compute the p-value

$$\frac{1}{K} \sum_{j=1}^{K} I(T^{(j)} > T).$$