CHAPTER 2. Random Variables
2.1. Random Variables

Having developed the ideas of sample spaces, events and so on, it is time to
tell you that we don’t actually use these ideas explicitly very often. Instead,
we more often use random variables. A random variable is a mapping from a
sample space to the real line. At a certain point in most probability courses,
the sample space is rarely mentioned and we work directly with random
variables. But you should keep in mind that the sample space is really there,
lurking in the background. Roughly speaking, random variables are “data”
and so, naturally, they are of great interest.

Let S be a sample space. A mapping X that assigns a real number X (s)
to each outcome s € S is called a random variable.

EXAMPLE. 2.1.1. Flip a coin ten times. Each outcome s consists of a
sequence of 10 coin tosses, for example, s = HHTHHTHHTT. Let X(s)
be the number of heads in the sequence s. Thus, if s = HHTHHTHHTT
then X (s) = 6. Note that S has 2'° elements while X can only take values
in {0,...,10}.

EXAMPLE. 2.1.2. Let S = {(z,y); 2> + y* < 1} be the unit disc.
Consider drawing a point “at random” from S. We will make this idea more
precise later. A typical outcome is of the form s = (z,y). Some examples of

random variables are X (s) =z, Y(s) =y, Z(s) =z +y, W(s) = Vz? + ¢

Given a random variable X and a subset A of the real line, define
Px(A)=P(X € A) = P(X'(4)) = P({s € S; X(s) € A}).
Then Px is called the distribution of X.

EXAMPLE. 2.1.3. Flip a coin twice and let X be the number of heads.
This random variable can only take values 0, 1 or 2. Clearly, P(X = 0) =
P{TT}) = 1/4, P(X = 1) = P({HT,TH}) = 1/2 and P(X = 2) =
P({HH}) =1/4. We can compute other probabilities as well. For example,
P(3< X <17)=P(X =1)+ P(X = 2) = 3/4. It might seem strange to
compute the probability that X falls in the interval [.3,17] but this serves to
emphasize that we can compute that probability for any subset A of the real
line.



2.2. Discrete Random Variables

X is discreteif it takes countably many values.! If X is discrete, we define
its probability mass function by

Thus, fx(xz) > 0 for all z € R and ¥ fx(z) = 1 where the sum is over those
values where fx(x) > 0. Note that fx is defined for all real numbers x but
it is 0 at most x. The cdf of X is

Fx(z)=P(X <z)=>_ f(s).

s<z

Sometimes we write fx and Fx simply as f and F.

Now we list some important random variables.

THE PoOINT MASs DISTRIBUTION. X has a point mass distribution at
a, written X ~ 4, if
0 z<a

F(“"):{1 x> a.

THE UNIFORM DISTRIBUTION. Let £ > 1 be a given integer. Suppose
that X has probability mass function given by

L forz=1,.... k
— k 9 bl
flz) = { 0 otherwise.

We say that X has a uniform distribution on {1,..., k}.

THE BERNOULLI DISTRIBUTION. Let X represent a coin flip. Then
P(X =1)=pand P(X =0) =1—p for some p € [0,1]. X has a Bernoulli
distribution written X ~ Bernoulli(p).

LA set is countable if it is finite or it can be put in a one-to-one correspondence with
the integers. The even numbers are countable; the set of real numbers between 0 and 1 is
uncountable.



THE BINOMIAL DISTRIBUTION. Suppose we have a coin which falls
heads with probability p for some 0 < p < 1. Flip the coin n times and let
X be the number of heads. Assume that the tosses are independent. Let
f(z) = P(X = z) be the mass function. It can be shown that

flz) = { ()1 —p)m e forz=0,...,n

0 otherwise.

A random variable with the mass function is called a Binomial random vari-
able and we write X ~ Binom(n,p) to say that X has this distribution.

Warning! Let us take this opportunity to prevent some confusion. X
is a random variable; x denotes a particular value of the random variable;
n and p are “parameters”, that is, fixed real numbers. Parameters are not
random. (At least not yet.) The parameter p is often unknown and must be
estimated from data; that’s what statistical inference is all about. In most
statistical models, there are random variables and parameters: don’t confuse
them.

THE GEOMETRIC DISTRIBUTION. X has a geometric distribution with
parameter p € (0, 1), written X ~ Geom(p), if
P(X=k)=p1l-p*", k>1

We have that

S PX=k=pY(l-pf=—=>F =1

k=1 k=0 S 1- (1-p)

Think of X as the number of flips needed until the first heads on a coin with
P(HEADS) = p.

THE Poi1ssoN DISTRIBUTION. X has a Poisson distribution with pa-
rameter )\, written X ~ Poisson()) if

Y A\E
Note that
[es) [ee] /\k
S flk)y=e? = e et =1
k=0 i—o k!



2.3. Continuous Random Variables

A random variable X is said to be continuous, or more accurately, is
said to have a continuous distribution, if there is a function f such that (i)
fx(z) >0, (ii) [ fx(z)dz =1 and (iii) P(X € A) = [, fx(x)dz. We call fx
the probability density function (pdf) for X. We shall sometimes write the
pdf as f and sometimes as fx. We use the convention that [ f(z)dz with
no limits of integration is to be interpreted to mean [ f(z)dz. The cdf is
Fx(z) = [*, f(s)ds. If the derivative exists, we can get the pdf from the cdf
since f(z) = F'(x). Two useful properties of cdf’s are:

and

It is also useful to define the tnverse cdf or quantile function. First suppose
that F is strictly increasing and continuous. Then, given a g € [0, 1], there
is a real number z such that F(z) = ¢. We write z = F~!(g). For example,
F~1(1/4) is the number z such that P(X < z) = 1/4. More generally, define
F~Yq) = inf{z : F(z) < q}. This allows us define the inverse cdf even in
the discrete case. We call F~1(1/4) the first quartile, F~*(1/2) the median
(or second quartile) and F~1(3/4) the third quartile.

EXAMPLE. 2.3.1. Suppose that X has pdf

| ¢ forze€la,b
flo) = { 0 otherwise.
Here a < b are real numbers and c is constant. Since [ f(x)dz = 1, it follows
that ¢ =1/(b —a). A random variable with this distribution is said to have
a Uniform (a,b) distribution. Each value between a and b us equally likely.
We write X ~ Unif(a,b). The median is (a + b)/2. The first quartile is
(3/4)a + (1/4)b.

EXAMPLE. 2.3.2. Suppose that X has pdf

0 for x <0

flz) = { m otherwise.



By direct integration we can see that [ f(z)dz = 1 so this is a well-defined
pdf.

Warning! Continuous random variables can lead to confusion. First,
note that if X is continuous then P(X = z) = 0 for every z! Don’t try to
think of f(x) as P(X = z). This only holds for discrete random variables.
One recovers probabilities from a pdf by integrating it. A pdf can be bigger
than 1 (unlike a mass function). For example, if f(z) = 5 for z € [0,1/5]
and 0 otherwise, then f(z) > 0 and [ f(z)dx = 1 so this is a well-defined pdf
even though f(z) = 5 in some places. In fact, a pdf can be unbounded. For
example, if f(z) = (2/3)21/3 for 0 < x < 1 and f(z) = 0 otherwise, then
check that [ f(z)dx =1 even though f is not bounded.

EXAMPLE. 2.3.3. Let

0 forz <0
fla) = { Cx otherwise.

This is not a pdf since [ f(z)dz = ¢ [° du/u = clog(oc) = co.

EXAMPLE. 2.3.4. Suppose that X is a discrete random variable and
that P(X = 0) = P(X =2) =1/4 and P(X = 1) = 1/2. Thus, f(0) =
f(2) =1/4 and f(1) =1/2. The cdf is given by

0 ifz<0
L ifo<z<1
— 4 —

P@=3113 j1<0<o

1 ifz>2.

EXAMPLE. 2.3.5. Suppose that

0 ifz<0

F("’”)—{Hiz if 2> 0.

Then, by differentiating F' we see that

0 if 0
f($)=F'($)={ 1 ;fi;()'

(T+a)?



SOME IMPORTANT CONTINUOUS DISTRIBUTIONS. Here are some im-
portant distributions, some of which we have already seen.

THE UNIFORM DISTRIBUTION. X has a Uniform(a, b) distribution, writ-
ten X ~ Uniform(a,b), if

for z € [a, b]
otherwise

ro={ 5

where a < b. The distribution function is

0 r<a
F(z) = ﬁ x € [a,b]
1 x > b.

NORMAL (GAUSSIAN). X has a Normal, or Gaussian distribution with
parameters p and o, denoted by X ~ N(u,0?), if

f@) = ——ep {5 5@ -pp}, zeR

 o2r

where 4 € R and o > 0. We say that X has a standard Normal distribution
if =0 and 0 = 1. The cdf is ®(z) = [ f(s)ds which does not have a
closed form expression. Here are two important facts. If X ~ N(u,o?) and
Z = (X — p)/o then Z ~ N(0,1). Also, If Z ~ N(0,1) and X = p+ oZ
then X ~ N(u,0?).

EXPONENTIAL DISTRIBUTION. X has an exponential distribution with
parameter 3, denoted by X ~ Exp(3), if
1
flz) = Ee"‘/ﬂ, x>0

where 5 > 0.

GAMMA DISTRIBUTION. For o > 0, the Gamma function is defined by
[(a) = [o°y* e ¥dy. X has an Gamma distribution with parameters a and
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B, denoted by X ~ Gamma(c, 3), if

1
BT (a)

e >0

f(z)
where «, 5 > 0.

2.4. Bivariate Distributions

Given a pair of discrete random variables X and Y, define the joint mass
function by f(z,y) = P(X = z and Y = y). From now on, we write
P( X =zand Y =y) as P(X = z,Y = y). We write f as fxy when we
want to be more explicit.

EXAMPLE. 2.4.1. Suppose a coin is biased and has probability 2/3 of
falling heads. Toss the coin twice. Let X = 0 if the first toss is tails and
X =1 if the first toss is heads. Define Y analogously for the second toss.
Then, f(0,0) = P(X =0,Y =0)=1/9, f(1,0) = P(X =1,Y =0) = 2/9,
f(0,1)=P(X=0,Y=1)=2/9, f(1,1)=P(X =1,Y =1)=4/9.

Y=0 Y=1
X=01/9 2/9 |1/3
X=1]2/9 4/9 |1/3
173 1/3 |1

In the continuous case, we call a function f(z,y) a pdf for the random
variables (X,Y) if (i) f(z,y) > 0 for all (z,y), (i) (%o [T f(z,y)dzdy = 1
and, for any set A C R x R, P((X,Y) € A) = [ [, f(z,y)dzxdy. In the
discrete or continuous case we define the joint cdf as Fxy(z,y) = P(X <
z,Y <y).

Warning! There are two types of bivariate distributions. The first type
involves distributions defined over rectangles. These rectangles can be infi-
nite, such as the whole plane. The rectangle case is easy because the range of
one variable does not depend on the range of the other variable. The second
type involves distributions defined over non-rectangles. The non-rectangle
case is hard because the range of one variable does depend on the range of
the other variable. When we integrate the density it becomes trickier. The



appendix has some non-rectangle examples. I will focus on rectangle exam-
ples because the difficulties of non-rectangle cases are more about calculus
than probability.

EXAMPLE. 2.4.2. Let (X,Y) be uniform on the unit square. Hence,

1 if0<z<1,0<y<l1
=} 1952E1 057

0 otherwise.

Find P(X <1/2,Y < 1/2). Theevent A = {X < 1/2,Y < 1/2} corresponds
to a subset of the unit square. Integrating f over this subset corresponds,
in this case, to computing the area of the set A which is 1/4. So, P(X <
1/2,Y <1/2) =1/4.

EXAMPLE. 2.4.3. Let (X,Y) have density

_Jrz+y H0<2<1,0<y<1
fz,y) _{ 0 otherwise.

Then

/Ol/ol(x—i-y)d:cdy = /01 [/Olfcdx] dy—i—/o1 [/Olydx} dy
/Olldy+/01ydy
1

2
+i=
5=

DN | —

which verifies that this is a pdf.
2.5. Marginal Distributions

If (X,Y) have joint distribution with mass function fx y, then the marginal
mass function for X is defined by fx(z) = P(X = 2) = ¥, P(X =
z,Y =y) = X, f(z,y) and the marginal mass function for Y is defined
by fy(y) =P(Y =y) =3, P(X =2,Y =y) =¥, f(z,y).

EXAMPLE. 2.5.1. Suppose that fxy is given in the table that fol-
lows. The marginal distribution for X corresponds to the row totals and
the marginal distribution for Y corresponds to the columns totals. For ex-
ample, fx(0) = 3/10 and fx (1) = 7/10.

8



Y=0 Y=1
X=0|1/10 2/10 | 3/10
X=13/10 4/10 |7/10
4710 6/10 |1

For continuous random variables, the definitions are fx(z) = [ f(z,y)dy
and fy(y) = [ f(z,y)dz. The marginal distribution functions are denoted
by Fx and Fy.

Warning! Again, we need to distinguish rectangle and non-rectangle
cases. The integral fx(z) = [ f(x,y)dy is easy in the rectangle case. It is
harder in the non-rectangle case. See the appendix for an example.

EXAMPLE 2.5.2. Suppose that

fxy(z,y) = e (1Y)

for z,y > 0. Then fx(z) =e* [(Ce Ydy =e °.

EXAMPLE 2.5.3. Suppose that

x4y f0<2<1,0<y<1
f(z;y) _{ 0 otherwise.

Then

1 1 1 1
fY(Z/):/O(x+y)dx:/0 :rdx+/0 ydy:§+y_

2.6. Independent Random Variables

Two random variables X and Y are independent if, for every A and B,
P(X € A)Y € B) = P(X € A)P(Y € B). In this case we write X IIY. In
principle, to check whether X and Y are independent we need to check this
equation for all subsets A and B. Fortunately, we have the following result
which we state for continuous random variables though it is true for discrete
random variables too.

THEOREM. 2.6.1. Let X and Y have joint pdf fxy. Then X 1Y if and
only if fxy(z,y) = fx(z)fy(y) for all values z and y.?

2The statement is not rigorous because the density is defined only up to sets of measure
0.




EXAMPLE 2.6.2. Let X and Y be such that P(X = 0,Y = 0) =
P(X=0Y=1)=PX=1Y=0)=PX =1,Y =1) = 1/4. Then,
fx(0) = fx(1) =1/2 and fy(0) = fy(1) = 1/2. X and Y are independent
because fx(0)fy(0) = f(0,0), fx(0)fy(1) = f(0,1), fx(1)fr(0) = f(1,0),
IxW)fr(1) = f(1,1).

Y=0 Y=1
0|1/4 1/4 |[1/2
101/4  1/4 |1/2
172 1/2 |1

X=
X=

Suppose instead that P(X = 0,Y =0) = P(X = 1,Y =1) = 1/2 and
P(X =0,Y =1) = P(X =1,Y =0) = 0. These are not independent
because fx(0)fy(1) =(1/2)(1/2) =1/4 yet f(0,1) = 0.

Y=0 Y=1
X=0[1/2 0 1/2
X=10 12 |1/2

12 12 |1

EXAMPLE. 2.6.3. Suppose that X and Y are independent and both have
the same density
2¢ f0<z<1
flo) = { 0 otherwise.

The joint density is

B )4y f0<2<1, 0<y<I1
f(@y) = fx(@)fv(y) = { 0 otherwise.

Let us find P(X+Y < 1). This turns out to be a “non-rectangle” calculation.
Here it is if you are interested:

PX+Y <1 = //Hy<1 f(z,y)dydx

= 4/01x /Ol_zydy] dz

L(l—2? 1

The following result is helpful for verifying independence.

10



THEOREM. 2.6.4. Suppose that the range of X and Y is a (possibly
infinite) rectangle. If f(z,y) = g(z)h(y) for some functions g and A then X
and Y are independent.

EXAMPLE. 2.6.5. Let X and Y have density

2e~(@+t2) if x > 0 and y > 0
flz,y) = { 0 otherwise.

The range of X and Y is the rectangle (0, 00) % (0, 00). We can write f(z,y) =
g(z)h(y) where g(z) = 2¢ % and h(y) = e %. Thus, X I1Y.
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2.7. Conditional Distributions

If X and Y are discrete, then we can compute the conditional distribution
of X given that we have observed Y = y. Specifically, P(X = z|Y = y) =
P(X =z,Y = y)/P(Y = y). This leads us to define the conditional mass
function

P(X=zY =y) _ fxy(z,y)
PY =y) fry)

Similarly, the mass function for Y given X is defined by

fxy(@ly) = P(X =z|]Y =y) =

fxy(z,y)
fx(x)

For continuous distributions we use the same definitions.> The interpreta-
tion differs: in the discrete case, fx|y(z|y) is P(X = z|Y = y) but in the
continuous case, we must integrate fx|y (z|y) to yield probability statements:

frix(ylz) =

P(X € AlY =y) = /AfX|y(x\y)dx.

EXAMPLE. 2.7.1. Let X and Y have a uniform distribution on the unit
square. Verify that fx|y(z|y) = 1 for 0 < z <1 and 0 otherwise. Thus, given
Y =y, X is Uniform (0,1). We can write this as X|Y =y ~ Unif(0,1).

From the definition of the conditional density, we see that fxy(z,y) =
Ixyy(@|y) fy(y) = frix(y|z)fx(x). This can sometimes be useful as in the
next example.

EXAMPLE. 2.7.3. Let

x4y f0<2<1,0<y<1
f(@;y) _{ 0 otherwise.

3We are treading in deep water here. When we compute P(X € A|Y = y) in the
continuous case we are actually conditioning on a set of probability 0! We avoided problems
by defining things in terms of the pdf. The fact that this leads to a well-defined theory is
proved in more advanced courses. We simply take it as a definition.

12



Earlier we saw that fy(y) =y + (1/2). Hence,

Ixy(z,y) _z+y
fr(y) y+s

fX|Y(I‘y) =

So

1.1 1/4 1
P(x<-y=2) = / ( —)
( <7 3) , e Elg)de

EXAMPLE. 2.7.4. Suppose that X ~ Unif(0,1). After obtaining a value
of X we generate Y |X =z ~ Unif(z,1). What is the marginal distribution
of Y7 First note that,

fela) = 1 f0<z<1
XU 0 otherwise
and 1o
= ifo<z<y<]
frix(ylz) = { 0  otherwise.
So,

ﬁ fo<zr<y<l1
0 otherwise.

Ixy(@,y) = frix(y|z)fx(x) = {

Computing the marginal for Y is a non-rectangle problem:

fr(y) = /Oy fxy(z,y)de = /Oy v __ /11_y du_ —log(1—1y)

11—z U

for 0 <y < 1.
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2.8. Multivariate Distributions and i.i.d Samples

Let X = (Xy,...,X,) where Xy,..., X, are random variables. We call
X a random vector. Let f(zq,...,x,) denote the pdf. It is possible to define
their marginals, conditionals etc. much the same way as in the bivariate case.
We say that Xi,..., X, are independent if, for every Ay, ..., A,,

P(X; € Ay,..., X, € A,) =[[P(Xi € 4).

i=1

It suffices to check that f(zq,...,z,) =112, fx,(z:). If Xi,..., X, are inde-
pendent and each has the same marginal distribution with density f, we say
that Xi,..., X, areii.d. (independent and identically distributed). We shall
write this as X;,...X,, ~ f or, in terms of the cdf, Xi,...X,, ~ F. This
means that Xq,...,X,, are independent draws from the same distribution.
We also call X1,...,X, a random sample from F'.

Much of statistical theory and practice begins with iid observations and
we shall study this case in detail when we discuss statistics.

EXAMPLE. 2.8.1. Suppose that the lifetime X of a light bulb is a random
variable with density

e ifz>0
Fx(@) = { 0 otherwise.

Suppose we have n light bulbs. Assuming that their failure times are inde-
pendent, what is the joint density of their lifetimes X, ..., X,. The answer

18 f(xla cee axn) = Hz f(x,), hence7

fan, ...

) = e izt i ifz; >0,1=1,...,n
o 0 otherwise.

2.9. Transformations of Random Variables
Suppose that X is a random variable with pdf fx and cdf Fx. Let
Y = r(X) be a function of X, for example, Y = X? or Y = ¢X. What

are the pdf and cdf of Y? This question pops up in many places. We call
Y = r(X) a transformation of X.

14



In the discrete case, the answer is easy. The mass function of Y is given
by

frly) =P =y) = P(r(X) =y) = P({z; r(z) =y}) = P(X € r7'()).
EXAMPLE. 2.9.1. Suppose that fx(—1) = P(X = —-1) =1/4, fx(0) =
P(X=0)=1/2 and fx(1) = P(X =1) = 1/4. Let Y = X2. Then, P(Y =

0) = P(X = 0) = 1/2 and P(Y = 1) = P(X = 1) + P(X = —1) = 1/2.
Hence, fy(0) =1/2 and fy (1) = 1/2.

The continuous case is trickier. Here is a suggestion: figure out the answer
in terms of the cdf then find the pdf. Thus, we calculate

Fy(y) = P(Y <y) = Pr(X) < y) = P({z; 1(@) <y}) = [ fx(a)do

where A, = {z; r(z) <y}. The only hard part is finding A,.
There are two cases. If r is monotone increasing or decreasing, the prob-
lem is easy. Otherwise, it is tricky. Here is an easy one.

EXAMPLE. 2.9.2. Let fx(z) = e ® forz > 0. Then Fx(z) = [y fx(s)ds =
1—e® Let Y =r(X)=1ogX. Then

Fy(y) =P(Y <y)=PlogX <y)=P(X <e¥) = Fx(e¥) =1—e“.

Therefore, fy(y) = eve™ for y € R.

Warning! It is tempting to transform the densities instead of the random
variables. This is wrong. In the last example, logfx(z) = —x # fy.

When 7 is strictly monotone increasing or strictly monotone decreasing
then 7 has an inverse s = r~! and in this case one can show that

sl = x| 2.

This formula is an alternative the the method we just did.
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The trickier problems are when r is not monotone. I will not cover this
case in class nor will you be tested on it. For your information, here is how
you do those cases.

EXAMPLE. 2.9.3. Let X ~ Unif(—1,1). Find the pdf of Y = X?. First,
we see that

Lif —1<z<1
_J 2
fx(z) { 0 otherwise.

Clearly, Y can only take values in (0,1). For any y € (0, 1),

Fy(y) = PY <y)=P(X*<y)
= P(—/y<X<Vy)

VY
= r)dr = \/y.
[, ixtade = vy
So, Ay = [—/y,/y] for 0 < y < 1 and A, = () otherwise. Now, fy(y) = F'(y)
SO

2vy
0 otherwise.

fy(y):{ L ifo<y<1

EXAMPLE. 2.9.4. Let X ~ Unif(—1,3). Find the pdf of Y = X?. This
one is harder. First, we see that

if —1<x<3
otherwise.

et ={ ¢

First, we note that Y can only take values in (0,9). But finding A, is a little
harder. It is easier to consider two case: case (i) 0 < y < 1 and case (ii) 1 <
y < 9. For case (i), Ay = [—/¥, /Y| and Fy(y) = [4, [x(2)dz = (1/2)\/y.
For case (i), A, = [-1,\/¥] and Fy(y) = [, fx(z)dz = (1/4)(\/y + 1).
Differentiating F' we get

if0<y<1
ifl<y<9
otherwise.

1

17y
fY(?/) = %
0
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2.10. The Probability Integral Transform

The last section discussed transformations in general. Here we study
one special transformation. Let X has a continuous, strictly increasing cdf
Fx. Define Y = F(X). It is worth pausing and thinking what this means:
we draw a random variable X whose cdf is X, then we evaluate the cdf
at the randomly selected point. What distribution does Y have? Since
0 < F(x) <1 for all z, we see that Y can only take values between 0 and
1. Given a point y, let z = Fx'(y) i.e. find z such that Fx(z) = y. Such
a point exists and is unique. Notice that Y is less than y if and only if X
is less than x. Thus, Fy(y) = P(Y <y) = P(X <z) = Fx(z) = y. So we
have shown that Fy(y) = y. This is the cdf for a Unif(0,1) random variable.
We have proved that Fx(X) has a Unif (0,1) distribution.

We can use similar reasoning to construct an all purpose random num-
ber generator. Assume we have a way to generate random numbers from
a Unif(0,1) distribution. (There are lots of algorithms for doing this). Let
X be a random variable with continuous, strictly increasing cdf Fx. How
can we generate a random X having distribution Fx? We can do this by
drawing Y ~ Unif(0,1). Then define X = H(Y) where H = F'. We claim
that X has the right distribution. To see this, we compute the cdf of X and
verify that it is Fx. Recall that since Y has a Unif(0,1) distribution that
P(Y <y)=Fy(y) =y for 0 <y < 1. Now,

P(X <) = P(H(Y) < &) = P(F5'(Y) < 2) = P(Y < Fx(x)) = Fx(a)
as required.
2.11. Functions of Several Random Variables

In some cases we are interested in transformation of several random vari-
ables. For example, if X and Y are given random variables, we might want to
know the distribution of X/Y or X 4+ Y. In principle one proceeds as before.
We start with the joint pdf fxy(z,y). Let Z = r(X,Y) be the function of
interest. Then we compute the cdf of Z:

Foe)=P(Z<2)= [ [ f(o,y)dody
where A, = {(z,y); r(z,y) < z}. Finally, we get fz be differentiating F.

Finding A, and doing the integral can be hard in some cases, but conceptually
the idea is the same as before.
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Some cases of special interest are summation and averaging. Suppose that

X1,...,X, are random variables and let Z = r(Xy,..., X,,) =n 'Y, X;.

How do we find the distribution of Z?7 We deal with this in Chapter 4.
Appendix: A Non-Rectangle Example
Let (X,Y) have density

exty if22<y<1
flwy) = { 0 otherwise.

Note first that —1 < £ < 1. Now let us find the value of ¢. The trick here
is to be careful about the range of integration. We pick one variable, = say,
and let it range over its values. Then, for each fixed value of x, we let y vary
over its range which is 22 < y < 1. Thus,

//f(x,y)dyd:c = c/_l1 /w: 22ydydz
= c/llas2 [/w:ydy] dx

1,1t
= c /_ T dx
4c
o1
Hence, ¢ = 21/4. Now let us compute P(X > Y). This corresponds to the
set A = {(z,9);0 <z < 1,22 <y < z}. (You can see this by drawing a
diagram.) So,

21 1o,
PX>Y) = Z/ / x ydydx
0 Ja?
21 1

_ 4l 2 [ [*
= T | L] ae

21 1 2 _ .4
= 22T
4 Jo 2

3
20
Let us find the marginal for X. We have
fx(@) = [ fay)dy
21

1 21
By
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for -1 <z <1 and fx(z) = 0 otherwise.
Now let’s find fyx(y|z). When X = z, y must satisfy 2* < y < 1.
Earlier, we saw that fx(z) = (21/8)z%(1 — z*). Hence, for 22 <y < 1,
Sy o ety 2y
fY|X(y",L‘) - fX(-’L') - %$2(1 _334) - 1

— 74

Now let us compute P(Y > 3/4|X = 1/2). This can be computed by first
noting that fyx(y|1/2) = 32y/15. Thus,

! 1 32y 7
P(Y 234X =1/2)= [ Ji/2dy= [ Ty =z
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