
Conformal Prediction

When doing estimation, we usually provide confidence intervals in addition to point esti-
mates. Is there a similar notion for predictions? The answer is yes: we provide prediction
sets or set-valued predictions. Given data (X1, Y1), . . . , (Xn, Yn) we construct a set-valued
function Cn, depending on (X1, Y1), . . . , (Xn, Yn) such that

P (Yn+1 ∈ Cn(Xn+1)) ≥ 1− α.

The approach we consider in these notes is conformal prediction. The idea is due to Vovk,
Gammerman and Shafer (2005). The statistical theory for conformal prediction was devel-
oped in Lei, Robins and Wasserman (2013), Lei and Wasserman (2014), Lei, G’Sell, Rinaldo,
Tibshirani and Wasserman (2017), Sadinle, Lei and Wasserman (2018).

The Unsupervised Case. We begin with the following problem. We observe Y1, . . . , Yn
and we want to predict Yn+1. The basic algorithm is as follows:

1. Observe Y1, . . . , Yn.

2. Define a permutation invariant residual function (or conformity score) Ri = φ(y,A)
where A is any dataset of size n+ 1.

3. For each y:

(a) Set Yn+1 = y and form the augmented dataset A = {Y1, . . . , Yn+1}.
(b) Let Ri = φ(Yi,A) for i = 1, . . . , n+ 1.

(c) Test the hypothesis H0 : Yn+1 = y by computing the p-value

π(y) =
1

n+ 1

n+1∑
i=1

I(Ri ≥ Rn+1).

(d) Invert the test: set
Cn = {y : π(y) ≥ α}.

Note that when H0 is true, the residuals are exchangeable and the p-value is uniform. There-
fore, we have:

Theorem 1 For every P ,
P (Yn+1 ∈ Cn) ≥ 1− α.

If P is absolutely continuous, we also have P (Yn+1 ∈ Cn) ≤ 1− α + 1
n+1

.
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Note that this result is distribution-free and holds for all finite samples.

A simple example of a residual function is

Ri =

∣∣∣∣Yi − Y1 + · · ·+ Yn+1

n+ 1

∣∣∣∣ .
A more complicated residual is

Ri =
1

p̂h(Yi)

where p̂h is a kernel density estimator constructed from the augmented data.

The coverage validity of the prediction set does not depend on the choice of residual. But a
poor choice can lead to large prediction sets. A careful choice can lead to minimax optimal
sets. For example, suppose that P has a density p. Let tα be such that P (Y ∈ C∗) = 1− α
where C∗ = {y : p(y) ≥ tα}. Note that C∗ is the smallest set such that P (Y ∈ C) = 1− α.
Suppose that p ∈ Holder(β) and that there exist c1, c2 and γ such that

c1|ε|γ ≤ |P (p(Y ) ≤ tα + ε)− ε| ≤ c2|ε|γ

for all small ε. In this case, any prediction set must satisfy µ(C∗∆Cn) ≥ rn with high
probability, where µ is Lebesgue, ∆ is Lebesgue measure and

rn =

(
log n

n

) βγ
2β+d

.

Theorem 2 The conformal set Cn based on the kernel density estimator (with appropriate
bandwidth) satisfies

P (µ(Cn∆Cα) ≥ rn) ≤
(

1

n

)λ
for any λ > 0.

For a proof, see Lei, Robins and Wasserman (2013). Thus, in this case, Cn is minimax under
the stated conditions. But Cn still has 1−α coverage even if the conditions fail. In fact, Cn
has 1− α coverage even if P does not have a density.

The algorithm above requires that we test H0 : Yn+1 = y for every y. In practice, we only
consider a grid of values for y. But this can be slow. The split conformal method is much
faster. The steps are:

1. Split the data into two sets D1 and D2.

2. Compute the residuals Ri = φ(Yi,D1) for Yi ∈ D1.
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3. Let q be the 1− α quantile of the residuals.

4. Return Cn = {y : φ(y,D1) ≤ q.

It is not hard to show that, once again we have

P (Yn+1 ∈ Cn) ≥ 1− α

for all P . The split conformal method is fast but can result in larger prediction sets. Also,
it depends on the particular split of the data. We might consider combining several splits.
Suppose that we split the data N times. For each split we construct a prediction set Cj at

level 1 − α/N . It follows that C =
⋂N
j=1Cj. It follows from the union bound that this is

valid at level 1−α. There are two effects: replacing α with α/N makes each set larger. But
taking the intersection makes the set smaller. Unfortunately it can be shown that, under
fairly general conditions, that the Lebesgue measure of C is larger than the set constructed
with one split, with probability tending to 1. So there seems to be no advantage to suing
several splits.

Regression. The extension to regression is straightforward. The data are {(X1, Y1), . . . , (Xn, Yn)}.
We augment the data with a new point (x, y). Again we define a residual Ri = φ((Xi, Yi),A)
and we define

π(x, y) =
1

n+ 1

∑
i

I(Ri ≥ Rn+1).

Then we set Cn(x) = {y : π(x, y) ≥ α}. We then have

P (Yn+1 ∈ Cn(Xn+1)) ≥ 1− α

for every P .

An example of a residual is
Ri = |Yi − m̂(Xi)|

where m̂ is based on the augmented data. The validity holds even if the model is wrong.
Again we can use splitting to speed up the calculations.

Note that the coverage guarantees are marginal. Under regularity conditions it can bge
shown that we get asymptotic conditional covage, that is,

P (Yn+1 ∈ Cn(x)|Xn+1 = x)→ 1− α.

It is not possible to get finhite sample, distribution-free conditional coverage as shown on
Lei and Wasserman (2014).

We can apply this method to high dimensional and nonparametric regression. The nice thing
is that we do not need the model to be correct. To see how well it works, see Figures 1, 2
and 3. (These are from Lei, G’Sell, Rinaldo, Tibshirani and Wasserman 2017.)
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Figure 1: Example: n = 200, d = 2, 000; linear and Normal
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Figure 2: Example: n = 200, d = 2, 000; nonlinear and heavy-tailed
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Figure 3: Example: n = 200, d = 2, 000; linear, correlated, heteroskedastic, heavy-tailed

Classification. The extension to classification is straightforward. The only change is the
choice of residual. An example of such a score is 1/p̂(Yi|Xi). Another example is the nearest
neighbor score

Ri =
mini: Yi=y ||x−Xi||
mini: Yi 6=y ||x−Xi||

.

One complication is that sometimes Cn(x) = ∅. Some methods for fixing this are discussed
in Sadinle, Lei and Wasserman (2018). On the other hand, if one uses the score 1/p̂(Xi|Yi)
then Cn(x) = ∅ when Xi is an outlier i.e. we have not seen a datapoint like Xi before.

5


