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1 Modes and Clusters

Let p be the density of X € R?. Assume that p has modes mi,...,mg, and that p is a Morse
function, which means that the Hessian of p at each stationary point is non-degenerate. We
can use the modes to define clusters as follows.

Given any point x € R?, there is a unique gradient ascent path, or integral curve, passing
through x that eventually leads to one of the modes. We define the clusters to be the “basins
of attraction” of the modes, the equivalence classes of points whose ascent paths lead to the
same mode. Formally, an integral curve through x is a path 7, : R — R? such that 7,(0) =x
and

1 (8) = Vp(x(t)). (1)

Integral curves never intersect (except at stationary points) and they partition the space.

Equation (1) means that the path 7 follows the direction of steepest ascent of p through x.
The destination of the integral curve m through a (non-mode) point x is defined by

dest(x) = tlir(rjlonx(t). (2)

It can then be shown that for all x, dest(x) = m; for some mode m;. That is: all integral
curves lead to modes. For each mode m , define the sets

dj:{x: dest(x):mj}. 3)

These sets are known as the ascending manifolds, and also known as the cluster associated
with m ;, or the basin of attraction of m ;. The «/;’s partition the space. See Figure 1. The
collection of ascending manifolds is called the Morse complex.

Given data Xq,...,X, we construct an estimate p of the density. Let mi,...,m be the
estimated modes and let «/1,..., < be the corresponding ascending manifolds derived from
p. The sample clusters C1,...,C}, are defined to be C; = {Xi : X € &Z}

Recall that the kernel density estimator is

Ix—XiII) @)

PO IR ey
p(x)zph(x)_ni;th( 3

where K is a smooth, symmetric kernel and /4 > 0 is the bandwidth.! The mean of the

In general, we can use a bandwidth matrix H in the estimator, with p(x) = pg(x) = %Z?le H(x—X;) where
Kp(x) = H[ 3 K(H tx).
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Figure 1: The left plot shows a function with four modes. The right plot shows the ascending
manifolds (basins of attraction) corresponding to the four modes.

estimator is
pr(x) =E[pr(x)] = fK(t)p(x+ th)dt. (5)

To locate the modes of p; we use the mean shift algorithm which finds modes by approx-
imating the steepest ascent paths. The algorithm is given in Figure 2. The result of this
process is the set of estimated modes M= 1,...,Mmp}. We also get the clustering for free:
the mean shift algorithm shows us what mode each point is attracted to. See Figure 3.

A modified version of the algorithm is the blurred mean-shift algorithm (Carreira-Perpinan,
2006). Here, we use the data as the mesh and we replace the data with the mean-shifted
data at each step. This converges very quickly but must be stopped before everything con-
verges to a single point; see Figures 4 and 5.

What we are doing is tracing out the gradient flow. The flow lines lead to the modes and
they define the clusters. In general, a flow is a map ¢ : R? x R — R such that ¢(x,0) = x and
Pd(P(x,t),s) = Pp(x,s +t). The latter is called the semi-group property.

2 Choosing the Bandwidth

As usual, choosing a good bandwidth is crucial. You might wonder if increasing the band-
width, decreases the number of modes. Silverman (1981) showed that the answer is yes if
you use a Normal kernel.



Mean Shift Algorithm

. Input: p(x) and a mesh of points A = {ai,...,an} (often taken to be the data
points).

. For each mesh point a;, set a(J.O)

= a; and iterate the following equation until

convergence:
n 1 -X;l
i-1 XiK R
(s+D)
J n 1 -X; |
-1 K R
. Let .4 be the unique values of the set {a(1°°), . ,agf,")}.
. Output: M.

Figure 2: The Mean Shift Algorithm.

Figure 3: A simple example of the mean shift algorithm.
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Figure 4: The crescent data example. Top left: data. Top right: a few steps of mean-shift.
Bottom left: a few steps of blurred mean-shift.
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Figure 5: The Broken Ring example. Top left: data. Top right: a few steps of mean-shift.
Bottom left: a few steps of blurred mean-shift.



Theorem 1 (Silverman 1981) Let p;, be a kernel density estimator using a Gaussian ker-
nel. Then the number of modes of py, is a non-increasing function of h.

We still need a way to pick 2. We can use cross-validation as before. One could argue that
we should choose A so that we estimate the gradient g(x) = Vp(x) well since the clustering
is based on the gradient flow.

How can we estimate the loss of the gradient? Consider, first the scalar case. Note that

f(ﬁ,_p,)2:‘[(ﬁ,)z_zfﬁp,+f(p,)2.

We can ignore the last term. The first term is known. To estimate the middle term, we use
integration by parts to get
f pp'=- f p'p

suggesting the cross-validation estimator
~ 2 2 NI
(p'(x)*dx+ ;Zpi(Xz)
i

where p' ’i’ is the leave-one-out second derivative. More generally, by repeated integration by
parts, we can estimate the loss for the r** derivative by

2
OV, ) = [ (BI@Pdz - =(-17 T pEri(Xo)

Let’s now discuss estimating derivatives more generally following Chacon and Duong (2013).
Let

1 n
pax)==> Kplx-X;)
ni=1

where Ky (x) = |H|"YV2K(H12x). Let D = 8/0x = (3/0x1,...,0/0x4) be the gradient operator.
Let H(x) be the Hessian of p(x) whose entries are 6%p/(dx j0xp). Let

D®rp — (Dp)®r — Orp/6x®r € Rd’
denote the r*" derivatives, organized into a vector. Thus
D®p=p, D®'p=Dp, D**p=vec(H)
where vec takes a matrix and stacks the columns into a vector.

The estimate of D®"p is

1Z 1Z
p\(r)(x) — D®rﬁH(x) — ; ZD®rKH(x _Xi) — ; Z |H|—1/2(H—1/2)®rD®rK(H—l/2(x _Xi)-
i=1 i1



The integrated squared error is
L= [ID* pute)-D¥ peoyPds.

Chacon, Duong and Wand shows that E[L] is minimized by choosing H so that each entry
has order n~?(@+27+9 Jeading to a risk of order O(n~#(@+2r+4) 1In fact, it may be shown that

1 1
E[L]= = |H| " Y2tr(H H*" R(D®'K))— =trR* (K * Kz,D®" p)
n n
+trR*(Kg *x Kzr,D® p) — 2trR* (K, D® p) + trR(D®" p)

where
R(g)= f gx)g” (x)dx

R*(a,g) = f (@ % @)®)g" (¥)dax

and (a * g) is componentwise convolution.

To estimate the loss, we expand L as
L= f IID®" pr(x)||*dx — 2[(D®rﬁH(x),D®rp(x))dx + constant.

Using some high-voltage calculations, Chacon and Duong (2013) derived the following leave-
one-out approximation to the first two terms:

CV.(H) = (-1)"|H|"(vec(H1)*") B(H)

where

B(H) = %ZDM’I_{(H‘M(XZ- ~-X)) -

i’j

®2r “12(v. _ v
oD 2 P K H X))

and K = K x K In practice, the minimization is easy if we restrict to matrices of the form
H=hI

3 Theoretical Analysis

How well can we estimate the modes? Here we derive the rate of convergence. For simplicity,
let’s focus on a simple case. Assume that p has one mode m and that p is locally quadratic
around m. We will use the analysis in Donoho and Liu (1991).



Let pp(x) = E[p(x)], let mj; maximize pj, and let 7, maximize pj. Note that
Dr(mp) = pr(mp).
Thus

[pr(mip) — pr(mp)l—[pr(my) — pr(my)l
=2 [pn(mp)—pr(mp)l—[pr(mp) — pr(mp)l = pr(mp) — pp(my)

2
=cllmp—myll

for some ¢ > 0, where we used the fact that pj, is locally quadratic around mj;. We conclude
that
Vrhd|lmpy, = mpll? = Zn(Rn) = Zn(mp)

where

Z,(t) = Vnhd(py(t)— pr(t)).

We know that, for each ¢, Z,(¢) converges to a Normal and hence, Z,(t) = Op(1). In fact,
sup; |Z,(t)| = Op(1). It follows that

V4
—mpll=0p|—| .
llmp, — mall P(nhd)

Using a Taylor series, it may be shown that ||m; — m|| = O(h). Hence,

1/4
”m—mh”:OP(W) +O(h)

We see that the optimal & is A = n~ 4+ gjving
1
lm =yl = Op [n~%7).

2L
Romano (1988) showed that the minimax rate is n 2r*d assuming p bounded derivatives in
a neighborhood around the mode. Our analysis gives the minimax rate for p = 2.

4 Level Sets

An alternative to mode clustering is level set clustering. Let L; = {x : p(x) >t} denote an
upper level set of p. Suppose that L; can be decomposed into finitely many disjoint sets:
L;=C1U---UCp,. We call €;=1{C1,...,Cy,} the level set clusters at level ¢.

Let € = U;>0 6:. The clusters in € form a tree: if A,B € €, the either i) AcBor (ii))Bc A
or (iii) ANB = @. We call € the level set cluster tree.
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Figure 6: DeBaClR in two dimensions.

The level sets can be estimated in the obvious way: L;={x: Pr(x)>t}. How do we decompose
L; into its connected components? This can be done as follows. For each ¢ let

i =1{X;: pp(X;) >t}

Now construct a graph G; where each X; € &; is a vertex and there is an edge between X;
and X; if and only if ||X; — X|| < € where € > 0 is a tuning parameter. G; is a called a Rips
graphs. The clusters at level ¢ are estimated by taking the connected components of the
graph G;.

In R, the package denpro does these calculations. A Python package, called DeBaCl, written
by Brian Kent, can be found at

http://www.brianpkent.com/projects.html.

Fabrizio Lecci has written an R implementation called DeBaCIR which we hope to post soon.
Two examples are shown in Figures 6 and 7.

5 Persistence

Consider a smooth density p with M = sup, p(x) < co. The t-level set clusters are the
connected components of the set L; = {x : p(x) = t}. Suppose we find the upper level sets
L;={x: p(x) =t} as we vary ¢ from M to 0. Persistent homology measures how the topol-
ogy of L; varies as we decrease t. In our case, we are only interested in the modes, which
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Figure 7: DeBaClR in three dimensions.

correspond to the zeroth order homology. (Higher order homology refers to holes, tunnels
etc.)

Imagine setting ¢ = M and then gradually decreasing . Whenever we hit a mode, a new
level set cluster is born. As we decrease ¢ further, some clusters may merge and we say that
one of the clusters (the one born most recently) has died. See Figure 8.

In summary, each mode m ; has a death time and a birth time denoted by (d;,5 ;). (Note that
the birth time is larger than the death time because we start at high density and move to
lower density.) The modes can be summarized with a persistence diagram where we plot the
points (d1,b1),...,(d,br) in the plane. See Figure 8. Points near the diagonal correspond to
modes with short lifetimes. We might kill modes with lifetimes smaller than the bootstrap
quantile ¢, defined by

) 1 & b~
€q =1Infiz: —ZI(Ilph —phlloo>z)5a . (6)
Bb=1

Here, ﬁ;b is the density estimator based on the b bootstrap sample. This corresponds to
killing a mode if it is in a 2¢, band around the diagonal. See Fasy, Lecci, Rinaldo, Wasser-
man, Balakrishnan and Singh (2013). Note that the starting and ending points of the verti-
cal bars on the level set tree are precisely the coordinates of the persistence diagram.



Figure 8: Starting at the top of the density and moving down, each mode has a birth time
b and a death time d. The persistence diagram (right) plots the points (d1,b1),...,(d4,b4).
Modes with a long lifetime are far from the diagonal.

6 Mixtures of Normals

Another method for clustering is based on mixtures. You covered this in 701. A mixture of
d-dimensional multivariate Gaussians is

k 1 1
. NTs-1 ,
p(ac)—jg_lzrj(2 N jll/zexp{ 2(ac pi) X (x ,uj)}.

There are w + k — 1 parameters to estimate. This is usually done by maximum likeli-

hood. But maximizing the likelihood is NP hard. Instead, one usually uses the EM algo-
rithm and hopes for the best. We can then assign observations to clusters since
7 (X;)

P(X; is from cluster j) = —————.
‘ P Y e (X))

There are problems with mixtures models which we now discuss.
Computation. Finding the mle is NP-hard.

Infinite Likelihood. Let p(x) = Z;‘?:l T p; 0?), be a mixture of Gaussians. Let £ (y) =
[1;_; py(X;) be the likelihood function based on a sample of size n. Then sup,, Z(y) = co.
To see this, set y; = X1 for some j. Then (P(Xl;[lj,a'?) = (V2n0;)"L. Now let o; — 0. We
have ¢(X1;u j,a?) — o0o. Therefore, the log-likelihood is unbounded. This behavior is very

10



different from a typical parametric model. Fortunately, if we define the maximum likelihood
estimate to be a mode of Z(v) in the interior of the parameter space, we get a well-defined
estimator.

Multimodality of the Density. Consider the mixture of two Gaussians
p(x) = (1= m)P(x; p1,0°) + (3 10, 0°).

You would expect p(x) to be multimodal but this is not necessarily true. The density p(x) is
unimodal when |u; — 2| < 20 and bimodal when |u; — ug| > 20. One might expect that the
maximum number of modes of a mixture of £ Gaussians would be k. However, there are
examples where a mixture of £ Gaussians has more than 2 modes. In fact, Edelsbrunner,
Fasy and Rote (2012) show that the relationship between the number of modes pf p and the
number of components in the mixture is very complex.

Nonidentifability. A model {pg(x): 6 € O} is identifiable if
01 #02 implies Py, # Py,

where Py is the distribution corresponding to the density pg. Mixture models are noniden-
tifiable in two different ways. First, there is nonidentifiability due to permutation of labels.
For example, consider a mixture of two univariate Gaussians,

Py, (x) = 0.3¢(x;0,1) +0.7¢p(x;2,1)

and
Dyo(x) = 0.7¢(x;2,1) + 0.3¢(x;0, 1),

then py, (x) = py,(x) even though w1 =(0.3,0.7,0,2,1)T #(0.7,0.3,2,0,1)T = y5. This is not a
serious problem although it does contribute to the multimodality of the likelihood.

A more serious problem is local nonidentifiability. Suppose that

p(x;m, p1, p) = (L= n)d(x; p1, 1) + nepla; po, 1). (7

When g = pg = u, we see that p(x;n, ui,u2) = ¢(x; ). The parameter n has disappeared.
Similarly, when 1 = 1, the parameter g disappears. This means that there are subspaces of
the parameter space where the family is not identifiable. This local nonidentifiability causes
many of the usual theoretical properties— such as asymptotic Normality of the maximum
likelihood estimator and the limiting y? behavior of the likelihood ratio test— to break down.
For the model (7), there is no simple theory to describe the distribution of the likelihood ratio
test for Hy : uy = pg versus Hjy : uy # po. The best available theory is very complicated. How-
ever, some progress has been made lately using ideas from algebraic geometry (Yamazaki
and Watanabe 2003, Watanabe 2010).

The lack of local identifiabilty causes other problems too. For example, we usually have
that the Fisher information is non-zero and that 6 — = Op(n~"2) where 8 is the maximum

11



likelihood estimator. Mixture models are, in general, irregular: they do not satisfy the usual
regularity conditions that make parametric models so easy to deal with. Here is an example
from Chen (1995).

Consider a univariate mixture of two Gaussians distribution:
2 1
po(x) = §¢(x; -0,1)+ §¢(x;29, 1).

Then it is easy to check that I(0) = 0 where I(0) is the Fisher information. Moreover, no
estimator of 6 can converge faster than n =74 if the number of components is not known in
advance. Compare this to a Normal family ¢(x;6,1) where the Fisher information is I(6) =n
and the maximum likelihood estimator converges at rate n~V2. Moreover, the distribution of
the mle is not even well understood for mixture models. The same applies to the likelihood
ratio test.

Nonintinuitive Group Membership. Our motivation for studying mixture modes in this
chapter was clustering. But one should be aware that mixtures can exhibit unexpected
behavior with respect to clustering. Let

p(x) = (1 - m)plx; 1,0%) + wh(ac; o, 02).

Suppose that p; < ua. We can classify an observation as being from cluster 1 or cluster 2 by
computing the probability of being from the first or second component, denoted Z = 0 and
Z =1. We get

(1—m)pla; pr1,0%)
(1 - m)plax; p1,0%) + mplax; g, 03)
Define Z(x) = 0 if P(Z = 0|X = x) > 1/2 and Z(x) = 1 otherwise. When o0 is much larger
than o9, Figure 9 shows Z(x). We end up classifying all the observations with large X;

to the leftmost component. Technically this is correct, yet it seems to be an unintended
consequence of the model and does not capture what we mean by a cluster.

P(Z=0|X =x) =

Improper Posteriors. Bayesian inference is based on the posterior distribution p(y|X7y,...,X,) x
Lw)n(y). Here, n(y) is the prior distribution that represents our knowledge of v before
seeing the data. Often, the prior is improper, meaning that it does not have a finite inte-

gral. For example, suppose that X7y,...,X, ~ N(y,1). It is common to use an improper prior

n(w) = 1. This is improper because

fﬂ(,u)dp = 00.

Nevertheless, the posterior p(u|2,) x £L(u)n(u) is a proper distribution, where £ (u) is the
data likelihood of . In fact, the posterior for u is N(X,1/y/n) where ¥ is the sample mean.
The posterior inferences in this case coincide exactly with the frequentist inferences. In
many parametric models, the posterior inferences are well defined even if the prior is im-
proper and usually they approximate the frequentist inferences. Not so with mixtures. Let

1 1
plx;p) = §¢(x;0,1)+ §</>(x;,u,1). (8)

12



<
- A Density function p(x)
N Ve
o | Class assignment
Z
Q3
© |
°© Class 2
< |
© Class 1 Class 1
N
o
o
o
I I I I I
-2 0 2 4 6
X

Figure 9: Mixtures are used as a parametric method for finding clusters. Observations with
x =0 and x = 6 are both classified into the first component.

If n(w) is improper then so is the posterior. Moreover, Wasserman (2000) shows that the only
priors that yield posteriors in close agreement to frequentist methods are data-dependent
priors.

Use With Caution. Mixture models can have very unusual and unexpected behavior. This
does not mean that we should not use mixture modes. Indeed, mixture models are extremely
useful. However, when you use mixture models, it is important to keep in mind that many
of the properties of models that we often take for granted, may not hold.
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