# This plot shows the effect of a linear transform to a normal # random variable. sd.neighborhood <- 5 # We'll polot +/- this many SDs x.mu <- 5.5 x.sd <- 0.5 y.mu <- log(x.mu) y.sd <- x.sd / abs(x.mu) x.values<-seq(from = x.mu - sd.neighborhood * x.sd, to = x.mu + sd.neighborhood * x.sd, by = 0.01) y.values <- log(x.values) x.max <- 2.2 * x.mu # Set graphical parameters. par(xaxs = "i") par(yaxs = "i") par(oma = rep(1, 4)) line.width <- 2 # Set up the plot. plot(0, 0, type = "n", xlim = c(-0.4, x.max), ylim = c(-0.05, log(x.max)), xaxt = "n", xlab = "", yaxt = "n", ylab = "", main = "", bty = "n") # Add the horizontal density, x, and then the vertical density, y, which is # a linear transformation of x. lines(x.values, 0.8*dnorm(x.values, x.mu, x.sd), lwd = line.width) lines(0.7*dnorm(y.values, y.mu, y.sd), y.values, lwd = line.width) # Add lines logvals<-seq(1, x.max, by = 0.01) lines(logvals, log(logvals), lwd = 3) lines(c(0, x.max), c(y.mu - sign(x.mu), (x.max/abs(x.mu)) + y.mu - sign(x.mu)), lwd = line.width) lines(c(x.mu, x.mu), c(0, y.mu), col = "gray", lty = 2, lwd = line.width) lines(c(0, x.mu), c(y.mu, y.mu), col = "gray", lty = 2, lwd = line.width) text(6, 2.3, expression(y-mu[y] == frac(1, abs(mu[x]))(x-mu[x])), cex = 1.4) text(10, 2.1, expression(y == log(x)), cex = 1.4) title(xlab = expression(paste(mu[x], phantom(xxx))), line=0, cex.lab=1.4) title(ylab = expression(paste(phantom(xxxxxxxxxxxxxxxx), mu[y])), line=-0.5, cex.lab=1.4) # Close the graphics device png("figure9.2.png")