% Figure 10.3
%
% Figure caption: Two pairs of normal distributions and the
% resulting ROC curves. The left hand side shows the pair of pdfs
% for N(0,1) (solid) and N(delta, 1) (dashed) and to the Right are
% the corresponding ROC curves.
%
% Top delta = 2. Bottom delta = 1.
deltas = [2, 1]
xValues = -4:0.01:6;
% Compute PDF and CDF of standard normal.
standardPdfValues = normpdf(xValues, 0, 1);
standardCdfValues = normpdf(xValues, 0, 1);
for i = 1:2
% First plot the overlapping PDFs.
subplot(2, 2, i)
delta = deltas(i);
% Standard Normal.
plot(xValues, standardPdfValues, '-k', 'LineWdith', 2)
hold on;
% Plus delta.
pdfValues = normpdf(xValues, delta, 1);
plot(xValues, pdfValues, '-k', 'LineWidth', 2)
set(gca, 'Box', 'off', 'FontSize', 18, ...
'XLim', [-4, 6], 'YLim', [0, 0.4], ...
'XTick', -4:2:6, 'YTick', [], 'TickDir', 'out')
% And now plot the ROC curves.
subplot(2, 2, i + 1)
cdfValues = normcdf(xValues, delta, 1)
plot(1 - standardCDFvalues, 1- cdfValues, '-k', 'LineWidth', 2)
set(gca, 'Box', 'off', 'FontSize', 18, ...
'XLim', [-0.02, 1.02], 'Ylim', [-0.02, 1.02], ...
'YTick', 0:0.2:1, 'XTick', 0:0.2:1, 'TickDir', 'out')
xlabel('level', 'FontSize', 18)
end
% Close and set figure position.
set(gcf, 'Position', [200, 100, 1500, 900])