% Figure 10.3 % % Figure caption: Two pairs of normal distributions and the % resulting ROC curves. The left hand side shows the pair of pdfs % for N(0,1) (solid) and N(delta, 1) (dashed) and to the Right are % the corresponding ROC curves. % % Top delta = 2. Bottom delta = 1. deltas = [2, 1] xValues = -4:0.01:6; % Compute PDF and CDF of standard normal. standardPdfValues = normpdf(xValues, 0, 1); standardCdfValues = normpdf(xValues, 0, 1); for i = 1:2 % First plot the overlapping PDFs. subplot(2, 2, i) delta = deltas(i); % Standard Normal. plot(xValues, standardPdfValues, '-k', 'LineWdith', 2) hold on; % Plus delta. pdfValues = normpdf(xValues, delta, 1); plot(xValues, pdfValues, '-k', 'LineWidth', 2) set(gca, 'Box', 'off', 'FontSize', 18, ... 'XLim', [-4, 6], 'YLim', [0, 0.4], ... 'XTick', -4:2:6, 'YTick', [], 'TickDir', 'out') % And now plot the ROC curves. subplot(2, 2, i + 1) cdfValues = normcdf(xValues, delta, 1) plot(1 - standardCDFvalues, 1- cdfValues, '-k', 'LineWidth', 2) set(gca, 'Box', 'off', 'FontSize', 18, ... 'XLim', [-0.02, 1.02], 'Ylim', [-0.02, 1.02], ... 'YTick', 0:0.2:1, 'XTick', 0:0.2:1, 'TickDir', 'out') xlabel('level', 'FontSize', 18) end % Close and set figure position. set(gcf, 'Position', [200, 100, 1500, 900])