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We have devised an approach to cancer class prediction from gene
expression profiling, based on an enhancement of the simple
nearest prototype (centroid) classifier. We shrink the prototypes
and hence obtain a classifier that is often more accurate than
competing methods. Our method of ‘‘nearest shrunken centroids’’
identifies subsets of genes that best characterize each class. The
technique is general and can be used in many other classification
problems. To demonstrate its effectiveness, we show that the
method was highly efficient in finding genes for classifying small
round blue cell tumors and leukemias.

The problem of class prediction has recently received a great
deal of attention in the context of DNA microarrays. Here

the task is to classify and predict the diagnostic category of a
sample on the basis of its gene expression profile. A problem of
particular importance is the diagnosis of cancer type based on
microarray data. Conventional diagnosis of cancer has been
based on examination of the morphological appearance of
stained tissue specimens in the light microscope. This method is
subjective and depends on highly trained pathologists. Microar-
rays offer hope that cancer classification can be objective and
highly accurate, which could provide clinicians with the infor-
mation to choose the most appropriate forms of treatment.
Recent proposals to solve this problem have utilized statistical
methods (1–3) and artificial neural networks (4).

The problem of classification by microarrays is challenging
because:

Y there are a large number of inputs (genes) from which to
predict classes and a relatively small number of samples, and

Y it is important to identify which genes contribute most to the
classification.

In this paper, we propose a simple approach that performs well
and is easy to understand and interpret. Our method has distinct
advantages over previous methods, especially when there are
more than two classes.

As our motivating example, we analyzed data for small round
blue cell tumors (SRBCT) of childhood (4). These data, con-
sisting of expression measurements on 2,308 genes, were ob-
tained from glass-slide cDNA microarrays, prepared according
to the standard National Human Genome Research Institute
protocol. The tumors are classified as Burkitt lymphoma (BL),
Ewing sarcoma (EWS), neuroblastoma (NB), or rhabdomyosar-
coma (RMS). A total of 63 training samples and 25 test samples
were provided, although five of the latter were not SRBCTs.
Using a complex neural network approach, ref. 4 achieved a test
error of 0% and identified 96 genes for the classification.

As a starting point, we analyzed these data by the conventional
method of nearest-centroid classification (see, e.g., ref. 5). Fig. 1
(light grey bars) shows the training-set centroids (average expres-
sion of each gene) for each of the four classes. The overall gene
expression centroid has been subtracted so these values should be
thought of as differences from the overall centroid. To apply the
method of nearest centroid classification, we take the gene expres-
sion profile of each test sample (array) and compute its squared
distance from each of the four class centroids. The predicted class

is the one whose centroid is closest to the expression profile of the
test sample. This procedure makes 5 errors on the 20 test samples
(2 errors on the training samples) and has the major drawback that
it uses all 2,308 genes. For practical applications, it would be more
attractive if many fewer genes were needed.

To achieve this goal, we propose a simple modification of the
nearest-centroid method, called ‘‘nearest shrunken centroid.’’ This
approach uses ‘‘de-noised’’ versions of the centroids as prototypes
for each class. The shrunken centroids, derived by using a method
described below, are the red bars in Fig. 1. Classification is made to
the nearest shrunken centroid or prototype. This approach yields
zero test and zero training errors. In addition, only 43 genes have
a nonzero red bar for one or more classes in Fig. 1 and hence are
the only ones required for the classification. The amount of
shrinkage is determined by cross-validation.

Nearest shrunken centroids can be used in unsupervised
problems as well. For example, it is standard procedure to use
hierarchical clustering methods on expression arrays to discover
clusters in the samples (6). The methods described here can
identify minimal subsets of the genes that succinctly characterize
each cluster.

Methods
Let xij be the expression for genes i � 1, 2, . . . p and samples j �
1, 2, . . . n. We have classes 1, 2, . . . K, and let Ck be indices of the
nk samples in class k. The ith component of the centroid for class
k is x�ik � �j�Ck

xij�nk, the mean expression value in class k for gene
i; the ith component of the overall centroid is x�i � �j�1

n xij�n.
In words, we shrink the class centroids toward the overall

centroids after standardizing by the within-class standard devi-
ation for each gene. This standardization has the effect of giving
higher weight to genes whose expression is stable within samples
of the same class. Such standardization is inherent in other
common statistical methods such as linear discriminant analysis.

Let

dik �
x� ik � x� i

mk��si � s0�
, [1]

where si is the pooled within-class standard deviation for gene i:

si
2 �

1
n � K �

k

�
j � Ck

�xij � x� ik�2, [2]

and mk � �1�nk � 1�n makes the mk�si equal to the estimated
standard error of the numerator in dik. In the denominator, the
value s0 is a positive constant (with the same value for all genes),
included to guard against the possibility of large dik values arising
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by chance from genes with low expression levels. We set s0 equal
to the median value of the si over the set of genes. A similar
strategy was used in the SAM methodology of ref. 7.

Thus dik is a t statistic for gene i, comparing class k to the
overall centroid. We rewrite Eq. 1 as

x� ik � x� i � mk�si � s0�dik. [3]

Our method shrinks each dik toward zero, giving d�ik and yielding
shrunken centroids or prototypes

x��ik � x� i � mk�si � s0�d�ik. [4]

The shrinkage we use is called soft thresholding: each dik is
reduced by an amount � in absolute value and is set to zero if its
absolute value is less than zero. Algebraically, soft thresholding
is defined by

d�ik � sign�dik���dik� � �� � , [5]

where � means positive part (t� � t if t 	 0 and zero otherwise).
Because many of the x� ik values will be noisy and close to the
overall mean x� i, soft thresholding usually produces more reliable
estimates of the true means (8, 9).

This method has the desirable property that many of the
components (genes) are eliminated from the class prediction as
the shrinkage parameter � is increased. Specifically, if for a gene
i, dik is shrunken to zero for all classes k, then the centroid for
gene i is x� i, the same for all classes. Thus gene i does not

contribute to the nearest-centroid computation. We choose � by
cross-validation, as illustrated below.

Results
Choosing the Amount of Shrinkage. Fig. 2 shows the training,
cross-validation, and test errors for different values of the shrinkage
parameter �. We used 10-fold cross-validation, dividing the set of
samples at random into 10 approximately equal-size parts. The 10
parts were roughly balanced, ensuring that the classes were distrib-
uted proportionally among each of the 10 parts. Ten-fold cross-
validation works as follows: we fit the model on 90% of the samples
and then predict the class labels of the remaining 10% (the test
samples). This procedure is repeated 10 times, with each part
playing the role of the test samples and the errors on all 10 parts
added together to compute the overall error (see ref. 5 for details).
Fig. 2 shows the results, from no shrinkage (Left) to complete
shrinkage (Right). Both the cross-validated and test error were
minimized near � � 4.34, which is the value we used to produce the
red bars in Fig. 1. The upper axis shows the number of active genes
with at least one nonzero component, d�ik, for each value of �. At
� � 4.34, there are 43 active genes.

The Genes That Classify SRBCTs. Fig. 3 shows the shrunken differ-
ences d�ik for the 43 genes having at least one nonzero difference.
Comparing these genes to the 96 genes identified in ref. 4, the
two lists have 27 genes in common. Fig. 4 shows the heat map of
our 43 genes. The horizontal rows of the map represent genes,

Fig. 1. Centroids (grey) and shrunken
centroids (red) for the SRBCT dataset.
The overall centroid has been sub-
tracted from the centroid from each
class. The horizontal units are log ratios
of expression. From left to right, the
numbers of training samples for each
class are 8, 23, 12, and 20. The order of
the genes is arbitrary.
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whereas the columns represent samples. Each pixel represents
the expression of one gene in one experiment: the colors depict
intensity (log expression ratio) from blue (large negative) to
yellow (large positive). We used hierarchical clustering to order
the genes within each of the horizontal partitions and to order
the samples within each vertical partition.

Consider the 2,308 
 4 � 9,232 unshrunken t statistics dik. The
43rd largest in absolute value is 4.34 (there are about 43 nonzero

components in the model). Using the Bonferroni adjustment, in
the context of 9,232 t statistics, this value would be barely
significant at the 0.05 level. This example illustrates another way
in which our procedure differs from the more common approach
of screening genes by significance of their individual t statistics.
Our method uses soft thresholding rather than screening and
focuses on misclassification error, which is the relevant measure
for class prediction problems.

Class Probabilities and Discriminant Functions. We classify test sam-
ples to the nearest shrunken centroid, again standardizing by si �
s0. We also correct for the relative number of samples in each class.

Suppose we have a test sample (a vector) with expression levels
x* � (x*1, x*2, . . . x*p). We define the discriminant score for class k

�k�x*� � �
i � 1

p
�x*i � x��ik�2

�si � s0�
2 � 2 log �k. [6]

The first term in Eq. 6 is simply the standardized squared
distance of x* to the kth shrunken centroid. The second term is
a correction based on the class prior probability �k, where
�k�1

K �k � 1. This prior probability gives the overall frequency of
class k in the population. The classification rule is then

C�x*� � � where ���x*� � mink�k�x*�. [7]

If the smallest distances are close and hence ambiguous, the prior
correction gives a preference for larger classes, because they
potentially account for more errors. We usually estimate the �k

by the sample priors �̂k � nk�n. If the sample prior is not
representative of the population, either more realistic priors or
equal priors �k � 1�K can be used.

Fig. 2. SBRCT classification: training (tr, green), cross-validation (cv, red), and
test (te, blue) errors are shown as a function of the threshold parameter �. The
value � � 4.34 is chosen and yields a subset of 43 selected genes.

Fig. 3. Shrunken differences d�ik for the 43 genes having at
least one nonzero difference. The genes with nonzero
components in each class are almost mutually exclusive.
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We can use the discriminant scores to construct estimates of
the class probabilities, by analogy to Gaussian linear discrimi-
nant analysis:

p̂k�x*� �
e�

1
2�k�x*�

�
� � 1

K e�
1
2���x*�

. [8]

Fig. 5 displays these probabilities for the training data (Upper)
and test data (Lower). Most samples have good separation
between the highest and next highest probability, demonstrating
that the sample is unambiguously classified by the method.

Leukemia Classification
Leukemia data from high-density Affymetrix oligonucleotide
arrays were previously analyzed in Golub et al. (1). There were
7,129 genes and 34 samples: 20 in class ALL (acute lymphocytic
leukemia) and 14 in class AML (acute mylogenous leukemia).
The results for the methods of Golub et al. and nearest shrunken
centroids are shown in Table 1.

Golub et al. report a test error rate of 4�34 for their procedure
(defined in the Appendix), using 50 genes to obtain their results.
We found that if the number of genes was reduced to less than
47, the test error increased. The results for the nearest shrunken

centroid method are shown in Fig. 6. The minimum cross-
validation error occurs near � � 1.4 but leaves about 1,000 genes.
In practice, this minimum error solution might be of interest.
Here, to obtain a more manageable set of genes, we chose
instead � � 4.06, the point at which the cross-validation error
starts to rise quickly, yielding only 21 genes. Our method was
superior to their procedure in both cross-validation error on the
training data and test error.

Discussion
The method of nearest shrunken centroids was successful in
finding genes that accurately predict classes. The method found
a set of 43 genes that was able to assign SBRCTs to one of four
classes, BL, EWS, NB, and RMS, with 100% accuracy. This
result was superior to the neural network method of Khan et al.
(4), which required 96 genes. Of our 43 genes, 27 were also found
by the neural network method. Thus, 69 of the genes from the
neural network are not required for classification.

We also identified six genes not identified in ref. 4. Cold-shock
domain protein A was underexpressed in NB. Farnesyl-
diphosphate farnesyltransferase 1, neurofibromin 1, presenilin 2,
homolog of mouse mesoderm specific transcript, and tissue
plasminogen activator were overexpressed in RMS. It is inter-
esting to note that cold-shock domain protein A is expressed in

Fig. 4. (Top) Heat map of the chosen 43 genes. Within each of the horizontal
partitions, we have ordered the genes by hierarchical clustering, and similarly
for the samples within each vertical partition. (Bottom) Heat map of three
genes reported in the literature to characterize SRBCT tumors. They are c-myc
(Top), CD45 (Middle) and myogenin (Bottom).

Fig. 5. Estimated probabilities for the training data (Upper) and test data
(Lower). Samples are partitioned by the true class (Upper) and the predicted
class (Lower). All 63 of the training samples and all 20 of the test samples
known to be SRBCT are correctly classified. Five of the test samples were
non-SRBCT and hence should not be classified as such. The maximum esti-
mated probability for each of these five samples is marked with a circle; they
are below the maximum probabilities for the other test samples in each class.

Table 1. Comparison of leukemia classification methods

Method 10-Fold CV error Test error No. of genes

Golub et al. (1) 3�38 4�34 50
Nearest shrunken centroid 1�38 2�34 21
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B cells and skeletal muscle but not in brain, consistent with our
finding that it is expressed 6-fold less in NB compared to BL,
EWS, and RMS. However, of the five genes with increased
expression in RMS, neurofibromin 2 and tissue plasminogen
activator are generally not expressed in muscle or heart tissue,
and presenilin is expressed in brain as well as muscle and heart.
Thus, genes that were predictive of a specific tumor did not
always reflect the expression levels in the tissue from which the
tumor was derived.

It is interesting to compare our list of 43 genes with genes that
are presently considered to be diagnostic for SBRCTs. Several
gene products are measured by immunostaining to distinguish
the SBRCTs from each other: common leukocyte antigen
(CD45) is specific for BL; MIC2 (CD99) is specific for EWS (10),
chromogranin A and synaptophysin are specific for NB (11); and
desmin, muscle-specific actin, myogenin, and MyoD1 are used
for RMS (12, 13). MIC2 is on our list of genes (Fig. 3), but the
other 7 genes are not. In addition, several genes play oncogenic
roles in the SBRCTs. C-myc is activated as a result of chromo-
somal translocation to one of the immunoglobulin loci in BL.
N-myc is commonly amplified in NB (14). One of the fusion
proteins EWS�FLI-1 or EWS�ERG is overexpressed from chro-
mosomal translocation in EWS (15). One of the fusion proteins
PAX3�FKHR or PAX7�FKHR is expressed in RMS (16). We
could find only three of the aforementioned genes in the cDNA
microarray of ref. 4; their data are displayed in Fig. 4 to
demonstrate their shortcomings in comparison to the genes
identified by nearest shrunken centroids.

Our method was also superior to the method of Golub et al.
in finding genes for leukemia classification. We found 21 genes
that distinguished acute mylogenous leukemia (AML) from
acute lymphocytic leukemia (ALL) with a lower error rate than
the genes identified in ref. 1. Our list of 43 genes included
myeloperoxidase and barely missed terminal deoxynucleotidyl
transferase, which were not identified in ref. 1 but are known to
be excellent markers for AML and ALL, respectively.

One goal of our method is to find the smallest set of genes that
can accurately classify samples. The efficiency of our method in
finding a relatively small number of predictive genes will facil-
itate the search for new diagnostic tools. There is often signif-
icant correlation in the expression patterns of groups of genes in
an experiment. Hence, after a minimal gene list is found, it may
be useful to search for other genes that are highly correlated with

the genes in this list. Gene interaction is another important issue.
Because genes often work in biological pathways, there could be
strong interactions between genes in the same pathway. Careful
post hoc analysis will be required to discover such interactions.

The success of our methodology has implications for improv-
ing the diagnosis of cancer. The method efficiently finds and
ranks genes that can distinguish one type of tumor from another.
Ultimately, it may be used to search for genes that are predictive
for response to chemotherapy. For SBRCTs and leukemias
analyzed here, the predictive genes are attractive candidates for
raising antibodies suitable for immunostaining. Immunohisto-
chemistry has an advantage for analyzing difficult specimens,
because it allows the pathologist to localize the stain to tumor
cells. In addition, our results suggest that RNA-based diagnostic
tests may soon become feasible, based on either small-scale
microarrays or quantitative PCR.

Appendix
Relationship to Other Approaches. The discriminant scores in Eq.
6 are similar to that used in linear discriminant analysis (LDA),
which arises from using the Mahalanobis metric in computing
distance to centroids:

�k
LDA�x*� � �x* � x�k�

TW�1�x* � x�k� � 2 log �k. [9]

Here we are using a vector notation, and W is the pooled
within-class covariance matrix. With thousands of genes and tens
of samples (p 		 n), W is huge, and any sample estimate will be
singular (hence its inverse is undefined). Our scores can be seen
to be a heavily restricted form of LDA, necessary to cope with
the large number of variables (genes). The differences are that:

Y we assume a diagonal within-class covariance matrix for W,
without which this LDA would be ill-conditioned and would fail;

Y we use shrunken centroids rather than simple centroids as a
prototype for each class;

Y as the shrinkage parameter � increases, an increasing number of
genes will have all their d�ik � 0, k � 1, . . . , K, because of the soft
thresholding in Eq. 5. Such genes contribute no discriminatory
information in Eq. 6 and in fact cancel in Eq. 8.

Refs. 1 and 2 present linear scoring procedures for the
two-class problems, which are very similar to each other and also
to our procedure and hence LDA in the two-class case. Both
methods work essentially by:

Y selecting a set of genes based on a two-sample t statistic, and then
Y forming a linear classifier in the selected x*i using these t

statistics as weights.

We describe the procedures in turn, using our own re-
expression and terminology but remaining faithful to the original
in each case. Ref. 2 uses a standard t test at level � to select
differentially expressed genes in two breast cancer types. They
then construct a ‘‘compound covariate’’ class predictor, which
they threshold to classify a sample into one of the two classes.
Their compound covariate is

h�x*� � �
i � S���

ti x*i, [10]

where x* is the gene expression vector for the sample to be
classified, ti is the t statistic for comparing the two classes in the
training data, and S(�) is the subset of genes with a significant
t statistic at level �. They use as a threshold the same compound
formula applied to (x�1 � x�2)�2. Here

Fig. 6. Leukemia classification: training (tr, green), cross-validation (cv, red),
and test (te, blue) errors. The value � � 4.06 yields a subset of 21 genes.
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ti �
x� i1 � x� i2

si�1
n1

�
1
n2

, [11]

where si is the pooled within-class standard deviation for gene i
as before, hence (ignoring irrelevant constants in n1 and n2)

H�x*� � h�x*� � h�x�1 � x�2

2 �
� �

i � S���

�x�i1 � x�i2� x*i
si

� �
i � S���

�x�i1 � x�i2�

si

�x�i1 � x�i2�

2
. [12]

Samples are assigned to class 1 if H(x*) 	 0 and to class 2
otherwise.

Ref. 1 uses a very similar procedure. Golub et al. screen the
genes using the absolute value of a ‘‘correlation measure’’

�i �
x� i1 � x� i2

si1 � si2
, [13]

where si1 and si2 are the class 1 and class 2 standard deviations
for gene i. This is very similar to a t statistic, using a somewhat
unorthodox estimate of the common standard deviation. They
then form a ‘‘weighted vote,’’ which is equivalent to using the
linear function

G�x*� � �
i � S�m�

�i�x*i �
x� i1 � x� i2

2 �
� �

i � S�m�

�x� i1 � x� i2� x*i
si1 � si2

� �
i � S�m�

�x� i1 � x� i2�

si1 � si2

�x� i1 � x� i2�

2
.

[14]

Again, if G(x*) 	 0, samples are assigned to class 1 and
otherwise to class 2. The actual screening procedure used by ref.
1 is fairly complex and depends on a parameter m (the number
of genes retained per class); m is determined by cross-validation.

We can re-express our discriminant scores in Eq. 6 for the
two-class case. Rather than picking the maximum of �̃1(x*) and
�̃2(x*), we can form the difference and threshold at zero. These
differences, after a little manipulation, can be seen to be

l�x*� � �̃1�x*� � �̃2�x*�

� �
i � S���

�x��i1 � x��i2� x*i
�si � s0�

2 � �
i � S���

�x��i1 � x��i2�
�si � s0�

2

�x��i1 � x��i2�
2

� log
�1

�2
.

The sums are over the set S (�) of genes remaining after
soft-thresholding. Here it is clear that if both genes are shrunk
to the overall mean, they drop out of the sum.

The three procedures are similar in form but differ in the details:

Y The LDA score uses a variance in the denominator, whereas
the other two scores use standard deviations. The variance is
a more natural quantity, because it arises from the squared
standardized distance.

Y The selection methods are different. Refs. 1 and 2 both use
hard thresholding of the t statistic as the basis of selection
(hard thresholding selects only those genes whose t statistics
fall above a threshold). Our selection is based on soft thresh-
olding of t statistics. Soft thresholding is known to perform
better in other settings (see, e.g., ref. 17).

Y We use cross-validation to select �, and Golub et al. (1) use it
to select their m. We could not determine whether Hedenfalk
et al. (2) use cross-validation to select �, although it would be
reasonable to do so.

Y Our procedure can adjust the classification according to the
class prior probabilities.

Y Our procedure provides estimates of probabilities in Eq. 8 for
each of the classes.

Y Our nearest prototype procedure works for more than two
classes.

With more than two classes, the method of nearest shrunken
centroids uses soft thresholds for all of the differences between
the class centroids and the overall centroid. In the process, it
chooses different sets of genes for characterizing each class, as
illustrated in Fig. 3.

The neural network approach (4) can be interpreted as a form
of dampened discriminant analysis. In that paper, Khan et al.
actually use a linear network, using the first 10 principal com-
ponents (eigengenes). In statistical parlance, this is known as
principal components regression and requires no iterative learn-
ing procedure or learning curves. Principal component regres-
sion is a hard-threshold version of ridge regression. Khan et al.
(4) do use a model-averaging procedure, similar to ‘‘bagging’’
(18) but based on 3-fold cross-validation, to regularize the
procedure further. Although their procedure also produced zero
training and test errors on the SRBCT data, it is far more
complex than nearest shrunken centroids. With so many genes
and so few samples, it is very likely that restricted versions of
simpler statistical methods will do as well as or better than neural
networks, as is the case here.

Software and Computational Details. The computations involved in
the shrunken nearest centroid method are straightforward. We
have developed a program similar to the popular SAM package
to implement nearest shrunken centroid classification. This
program incorporates methods for automatic threshold choice
and graphical methods for application of the procedure to the
results of an unsupervised clustering procedure. Details may be
found at http:��www-stat.stanford.edu��tibs�PAM.
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