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ABSTRACT. Classification using high-dimensional features arises frequently
in many contemporary statistical studies such as tumor classification using
microarray or other high-throughput data. The impact of dimensionality on
classifications is largely poorly understood. In a seminal paper, Bickel and
Levina (2004) show that the Fisher discriminant performs poorly due to di-
verging spectra and they propose to use the independence rule to overcome
the problem. We first demonstrate that even for the independence classifi-
cation rule, classification using all the features can be as bad as the random
guessing due to noise accumulation in estimating population centroids in
high-dimensional feature space. In fact, we demonstrate further that al-
most all linear discriminants can perform as bad as the random guessing.
Thus, it is paramountly important to select a subset of important features
for high-dimensional classification, resulting in Features Annealed Indepen-
dence Rules (FAIR). The conditions under which all the important features
can be selected by the two-sample t-statistic are established. The choice of
the optimal number of features, or equivalently, the threshold value of the
test statistics are proposed based on an upper bound of the classification
error. Simulation studies and real data analysis support our theoretical re-
sults and demonstrate convincingly the advantage of our new classification
procedure.
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1 Introduction

With rapid advance of imaging technology, high-throughput data such as microarray

and proteomics data are frequently seen in many contemporary statistical studies. For

instance, in the analysis of Microarray data, the dimensionality is frequently thousands

or more, while the sample size is typically in the order of tens (West et al., 2001; Dudoit

et al., 2002). See Fan and Ren (2006) for an overview. The large number of features

presents an intrinsic challenge to classification problems. For an overview of statistical

challenges associated with high dimensionality, see Fan and Li (2006).

Classical methods of classification break down when the dimensionality is extremely

large. For example, even when the covariance matrix is known, Bickel and Levina (2004)

demonstrate convincingly that the Fisher discriminant analysis performs poorly in a

minimax sense due to the diverging spectra (e.g. , the condition number goes to infinity

as dimensionality diverges) frequently encountered in the high-dimensional covariance

matrices. Even if the true covariance matrix is not ill conditioned, the singularity of the

sample covariance matrix will make the Fisher discrimination rule inapplicable when

the dimensionality is larger than sample size. Bickel and Levina (2004) show that the

independence rule overcomes the above two problems. However, in tumor classification

using microarray data, we hope to find tens of genes that have high discriminative power.

The independence rule, studied by Bickel and Levina (2004), does not possess this kind

of properties.

The difficulty of high-dimensional classification is intrinsically caused by the exis-

tence of many noise features that do not contribute to the reduction of misclassification

rate. Though the importance of dimension reduction and feature selection has been

stressed and many methods have been proposed in the literature, very little research

has been done on theoretical analysis of the impacts of high dimensionality on classifi-
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cation. For example, using most discrimination rules such as the linear discriminants,

we need to estimate the population mean vectors from the sample. When the dimen-

sionality is high, even though each component of the population mean vectors can be

estimated with accuracy, the aggregated estimation error can be very large and this has

adverse effects on the misclassification rate. Therefore, when there is only a fraction of

features that account for most of the variation in the data such as tumor classification

using gene expression data, using all features will increase the misclassification rate.

To illustrate the idea, we study independence classification rule. Specifically, we give

an explicit formula on how the signal and noise affect the misclassification rates. We

show formally how large the signal to noise ratio can be such that the effect of noise

accumulation can be ignored, and how small this ratio can be before the independence

classifier performs as bad as the random guessing. Indeed, as demonstrated in Section

2, the impact of the dimensionality can be very drastic. For the independence rule, the

misclassification rate can be as high as the random guessing even when the problem is

perfectly classifiable. In fact, we demonstrate that almost all linear discriminants can

not perform any better than random guessing, due to the noise accumulation in the

estimation of the population mean vectors, unless the signals are very strong, namely

the population mean vectors are very far apart.

The above discussion reveals that feature selection is necessary for high-dimensional

classification problems. When the independence rule is applied to selected features,

the resulting Feature Annealed Independent Rules (FAIR) overcome both the issues of

interpretability and the noise accumulation. One can extract the important features via

variable selection techniques such as the penalized quasi-likelihood function. See Fan

and Li (2006) for an overview. One can also employ a simple two-sample t-test as in

Tibshirani et al.(2002) to identify important genes for the tumor classification, resulting
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in the nearest shrunken centroids method. Such a simple method corresponds to a

componentwise regression method or a ridge regression method with ridge parameters

tending to ∞ (Fan and Lv, 2007). Hence, it is a specific and useful example of the

penalized quasi-likelihood method for feature selection. It is surprising that such a

simple proposal can indeed extract all important features. Indeed, we demonstrate that

under suitable conditions, the two sample t-statistic can identify all the features that

efficiently characterize both classes.

Another popular class of the dimension reduction methods is projection. They have

been widely applied to the classification based on the gene expression data. See, for

example, principal component analysis in Ghosh (2002), Zou et al.(2004), and Bair et

al.(2004); partial least squares in Nguyen and Rocke (2002 ), Huang and Pan (2003), and

Boulesteix(2004); and sliced inverse regression in Chiaromonte and Martinelli (2002),

Antoniadis et al.(2003), and Bura and Pfeiffer (2003). These projection methods at-

tempt to find directions that can result in small classification errors. In fact, the di-

rections found by these methods usually put much more weights on features that have

large classification power. In general, however, linear projection methods are likely to

perform poorly unless the projection vector is sparse, namely, the effective number of

selected features is small. This is due to the aforementioned noise accumulation promi-

nently featured in high-dimensional problems, recalling discrimination based on linear

projections onto almost all directions can perform as bad as the random guessing.

As direct application of the independence rule is not efficient, we propose a specific

form of FAIR. Our FAIR selects the statistically most significant m features according

to the componentwise two-sample t-statistics between two classes, and applies the inde-

pendence classifiers to these m features. Interesting questions include how to choose the

optimal m, or equivalently, the threshold value of t-statistic, such that the classification
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error is minimized, and how this classifier performs compared with the independence

rule without feature selection and the oracle-assisted FAIR. All these questions will be

formally answered in this paper. Surprisingly, these results are similar to those for the

adaptive Neyman test in Fan (1996). The theoretical results also indicate that FAIR

without oracle information performs worse than the one with oracle information, and

the difference of classification error depends on the threshold value, which is consistent

with the common sense.

There is a huge literature on classification. To name a few in addition to those men-

tion before, Bai and Saranadasa (1996) dealt with the effect of high dimensionality in a

two-sample problem from a hypothesis testing viewpoint; Friedman (1989) proposed a

regularized discriminant analysis to deal with the problems associated with high dimen-

sion while performing computations in the regular way; Dettling and Bühlmann (2003)

and Bühlmann and Yu (2003) study boosting with logit loss and L2 loss, respectively,

and demonstrate the good performances of these methods in high-dimensional setting;

Greenshtein and Ritov (2004), Greenshtein (2006) and Meinshausen (2005) introduced

and studied the concept of persistence, which places more emphasis on misclassification

rates or expected loss rather than the accuracy of estimated parameters.

This article is organized as follows. In Section 2, we demonstrate the impact of

dimensionality on the independence classification rule, and show that discrimination

based on projecting observations onto almost all linear directions is nearly the same as

random guessing. We establish, in Section 3, the conditions under which two sample

t-test can identify all the important features with probability tending to 1. In Section

4, we propose FAIR and give an upper bound of its classification error. Simulation

studies and real data analyses are conducted in Section 5. The conclusion of our study

is summarized in Section 6. All proofs are given in the Appendix.
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2 Impact of High Dimensionality

Consider the p-dimensional classification problem between two classes C1 and C2. Sup-

pose that from class Ck, we have nk observations Y k1, · · · , Y knk
in Rp. The j-th feature

of the i-th sample from class Ck satisfies the model

Ykij = µkj + εkij , k = 1, 2, i = 1, · · · , nk, j = 1, · · · , p,(2.1)

where µkj is the mean effect of the j-th feature in class Ck and εkij is the corresponding

Gaussian random noise for i-th observation. In matrix notation, the above model can

be written as

Y ki = µk + εki, k = 1, 2, i = 1, · · · , nk,

where µk = (µk1, · · · , µkp)′ is the mean vector of class Ck and εki = (εki1, · · · , εkip)′

has the distribution N(0,Σk). We assume that all observations are independent across

samples and in addition, within class Ck, observations Y k1, · · · , Y knk
are also identically

distributed. Throughout this paper, we make the assumption that the two classes have

compatible sample sizes, i.e., c1 ≤ n1/n2 ≤ c2 with c1 and c2 some positive constants.

We first investigate the impact of high dimensionality on classification. For simplic-

ity, we temporarily assume that the two classes C1 and C2 have the same covariance

matrix Σ. To illustrate our idea, we consider the independence classification rule, which

classifies the new feature vector x into class C1 if

δ(x) = (x− µ)′D−1(µ1 − µ2) > 0,

where µ = (µ1 + µ2)/2 and D = diag(Σ). This classifier has been thoroughly studied

in Bickel and Levina (2004). They showed that in the classification of two normal

populations, this independence rule greatly outperforms the Fisher linear discriminant

rule under broad conditions when the number of variables is large.
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The independence rule depends on the marginal parameters µ1, µ2 and D = diag{σ2
1,

· · · , σ2
p}. They can easily be estimated from the samples:

µ̂k =
nk∑

i=1

Y ki/nk, k = 1, 2, µ̂ = (µ̂1 + µ̂2)/2

and

D̂ = diag{(S2
1j + S2

2j)/2, j = 1, · · · , p},

where S2
kj =

∑nk
i=1(Ykij − Ȳkj)2/(nk − 1) is the sample variance of the j-th feature in

class k and Ȳkj =
∑nk

i=1 Yki/nk. Hence, the plug-in discrimination function is

δ̂(x) = (x− µ̂)′D̂−1(µ̂1 − µ̂2).

Denote the parameter by θ = (µ1,µ2,Σ). If we have a new observation X from class

C1, then the misclassification rate of δ̂ is

W (δ̂, θ) = P (δ̂(X) ≤ 0|Y ki, i = 1, · · · , nk, k = 1, 2) = 1− Φ(Ψ),(2.2)

where

Ψ =
(µ1 − µ̂)′D̂−1(µ̂1 − µ̂2)√

(µ̂1 − µ̂2)′D̂−1ΣD̂−1(µ̂1 − µ̂2)
,

and Φ(·) is the standard Gaussian distribution function. The worst case classification

error is

W (δ̂) = max
θ∈Γ

W (δ̂,θ),

where Γ is some parameter space to be defined. Let n = n1 + n2. In our asymptotic

analysis, we always consider the misclassification rate of observations from C1, since the

misclassification rate of observations from C2 can be easily obtained by interchanging n1

with n2 and µ1 with µ2. The high dimensionality is modeled through its dependence
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on n, namely pn → ∞. However, we will suppress its dependence on n whenever there

is no confusion.

Let R = D−1/2ΣD−1/2 be the correlation matrix, and λmax(R) be its largest eigen-

value, and α ≡ (α1, · · · , αp)′ = µ1 − µ2. Consider the parameter space

Γ = {(α,Σ) : α′D−1α ≥ Cp, λmax(R) ≤ b0, min
1≤j≤p,k=1,2

σ2
kj > 0}

where Cp is a deterministic positive sequence that depends only on the dimensionality

p, and b0 is a positive constant. Note that α′D−1α corresponds to the overall strength

of signals, and the first condition α′D−1α ≥ Cp imposes a lower bound on the strength

of signals. The second condition λmax(R) ≤ b0 requires that the maximum eigenvalue

of R should not exceed a positive constant. But since there are no restrictions on the

smallest eigenvalue of R, the condition number can still diverge. The third condition

min
1≤j≤p,k=1,2

σ2
kj > 0 ensures that there are no deterministic features that make classi-

fication trivial and the diagonal matrix D is always invertible. We will consider the

asymptotic behavior of W (δ̂, θ) and W (δ̂).

Theorem 1 Suppose that log p = o(n), n = o(p) and nCp →∞. Then

(i) The classification error W (δ, θ) with θ ∈ Γ is bounded from above as

W (δ̂, θ) ≤ 1− Φ

(
[n1n2/(pn)]1/2α′D−1α(1 + oP (1)) +

√
p/(nn1n2)(n1 − n2)

2
√

λmax(R)
{
1 + n1n2/(pn)α′D−1α(1 + oP (1))

}1/2

)
.

(ii) Suppose p/(nCp) → 0. For the worst case classification error W (δ), we have

W (δ̂) = 1− Φ
(1

2
[n1n2/(pnb0)]1/2Cp{1 + oP (1)}

)
.

Specifically, when {n1n2
pn }1/2Cp → C0 with C0 a nonnegative constant, then

W (δ̂) P−→ 1− Φ(C0/(2
√

b0)).

In particular, if C0 = 0, then W (δ̂) P−→ 1
2 .
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Theorem 1 reveals the trade-off between the signal strength Cp and the dimension-

ality, reflected in the term Cp/
√

p when all features are used for classification. It states

that the independence rule δ̂ would be no better than the random guessing due to noise

accumulation, unless the signal levels are extremely high, say, {n
p}1/2Cp ≥ B for some

B > 0. Indeed, discrimination based on linear projections to almost all directions per-

forms nearly the same as random guessing, as shown in the theorem below. The poor

performance is caused by noise accumulation in the estimation of µ1 and µ2.

Theorem 2 Suppose that a is a p-dimensional uniformly distributed unit random vector

on a (p − 1)-dimensional sphere. Let λ1, · · · , λp be the eigenvalues of the covariance

matrix Σ. Suppose limp
1
p2

∑p
j=1 λ2

j < ∞ and limp
1
p

∑p
j=1 λj = τ with τ a positive

constant. Moveover, assume that p−1α′α → 0. Then if we project all the observations

onto the vector a and use the classifier

δ̂a(x) = (a′x− a′µ̂)(a′µ̂1 − a′µ̂2),(2.3)

the misclassification rate of δ̂a satisfies

P (δ̂a(X) ≤ 0|Y ki, i = 1, · · · , nk, k = 1, 2) P−→ 1
2
,

where the probability is taken with respect to a and X ∈ C1.

3 Feature Selection by Two-Sample t-Test

To extract salient features, we appeal to the two sample t-test statistics. Other compo-

nentwise tests such as the rank sum test can also be used, but we do not pursue those

in detail. The two-sample t-statistic for feature j is defined as

Tj =
Ȳ1j − Ȳ2j√

S2
1j/n1 + S2

2j/n2

, j = 1, · · · , p,(3.1)
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where Ȳkj and S2
kj are the same as those defined in Section 1. We work under more

relaxed technical conditions: the normality assumption is not needed. Instead, we

assume merely that the noise vectors εki, i = 1, · · · , nk are i.i.d. within class Ck with

mean 0 and covariance matrix Σk, and are independent between classes. The covariance

matrix Σ1 can also differ from Σ2.

To show that the t-statistic can select all the important features with probability 1,

we need the following condition.

Condition 1:

(a) Assume that the vector α = µ1−µ2 is sparse and without loss of generality, only

the first s entries are nonzero.

(b) Suppose that εkij and ε2kij − 1 satisfy the Cramér’s condition, i.e., there exist

constants ν1, ν2, M1 and M2, such that E|εkij |m ≤ m!Mm−2
1 ν1/2 and E|ε2kij −

σ2
kj |m ≤ m!Mm−2

2 ν2/2 for all m = 1, 2, · · · .

(c) Assume that the diagonal elements of both Σ1 and Σ2 are bounded away from 0.

The following theorem describes the situation under which the two sample t-test can

pick up all important features by choosing an appropriate critical value. Recall that

c1 ≤ n1/n2 ≤ c2 and n = n1 + n2.

Theorem 3 Let s be a sequence such that log(p − s) = o(nγ) and log s = o(n
1
2
−γβn)

for some βn → ∞ and 0 < γ < 1
3 . Suppose that min

1≤j≤s

|αj |q
σ2
1j+σ2

2j

= n−γβn. Then under

Condition 1, for x ∼ cnγ/2 with c some positive constant, we have

P (min
j≤s

|Tj | ≥ x and max
j>s

|Tj | < x) → 1.
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In the proof of Theorem 3, we used the moderate deviation results of the two-sample

t-statistic (see Cao, 2007 or Shao, 2005). Theorem 3 allows the lowest signal level to

decay with sample size n. As long as the rate of decay is not too fast and the sample

size is not too small, the two sample t-test can pick up all the important features with

probability tending to 1.

4 Features Annealed Independence Rules

We apply the independence classifier to the selected features, resulting in a Features

Annealed Independence Rule (FAIR). In many applications such as tumor classification

using gene expression data, we would expect that elements in the population mean

difference vector α are sparse: most entries are small. Thus, even if we could use t-test

to correctly extract out all these features, the resulting choice is not necessarily optimal,

since the noise accumulation can even exceed the signal accumulation for faint features.

This can be seen from Theorem 1. Therefore, it is necessary to further single out the

most important features that help reduce misclassification rate.

To help us select the number of features, or the critical value of the test statistic,

we first consider the ideal situation that the important features are located at the first

m coordinates and our task is to merely select m to minimize the misclassification rate.

This is the case when we have the ideal information about the relative importance of

features, as measured by |αj |/σj , say. When such an oracle information is unavailable,

we will learn it from the data. In the situation that we have vague knowledge about the

importance of features such as tumor classification using gene expression data, we can

give high ranks to features with large |αj |/σj .

In the presentation below, unless otherwise specified, we assume that the two classes

C1 and C2 are both from Gaussian distributions and the common covariance matrix
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is the identity, i.e., Σ1 = Σ2 = I. If this common covariance matrix is known, the

independence classifier δ̂ becomes the nearest centroids classifier

δ̂NC(x) = (x− µ̂)′(µ̂1 − µ̂2).

If only the first m dimensions are used in the classification, the corresponding features

annealed independence classifier becomes

δ̂m
NC(x) = (xm − µ̂m)′(µ̂m

1 − µ̂m
2 ),

where the superscript m means that the vector is truncated after the first m entries. This

is indeed the same as the nearest shrunken centroids method of Tibshirani et al.(2002).

Theorem 4 Consider the truncated classifier δ̂mn
NC for a given sequence mn. Suppose

that n√
mn

∑mn
j=1 α2

j →∞ as mn →∞. Then the classification error of δ̂mn
NC is

W (δ̂mn
NC , θ) = 1− Φ

((1 + oP (1))
∑mn

j=1 α2
j + mn(n1 − n2)/(n1n2)

2{(1 + oP (1))
∑mn

j=1 α2
j + nmn/n1n2}1/2

)
,

where n = n1 + n2 as defined in Section 2.

In the following, we suppress the dependence of m on n when there is no confusion.

The above theorem reveals that the ideal choice on the number of features is

m0 = argmax1≤m≤p

[
∑m

j=1 α2
j + m(n1 − n2)/(n1n2)]2

nm/(n1n2) +
∑m

j=1 α2
j

.

It can be estimated as

m̂0 = argmax1≤m≤p

[
∑m

j=1 α̂2
j + m(n1 − n2)/(n1n2)]2

nm/(n1n2) +
∑m

j=1 α̂2
j

,

where α̂j = µ̂1j−µ̂2j . The expression for m0 quantifies how the signal and the noise affect

the misclassification rates as the dimensionality m increases. In particular, when n1 =
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n2, the express reduces to m0 = argmax1≤m≤p
[m−1/2

Pm
j=1 α2

j ]2

2/n+
Pm

j=1 α2
j/m

. The term m−1/2
∑m

j=1 α2
j

reflects the trade-off between the signal and noise as dimensionality m increases.

The good performance of the classifier δ̂m
NC depends on the assumption that the

largest entries of α cluster at the first m dimensions. An ideal version of the classifier

δ̂NC is to select a subset A = {j : |αj | > a} and use this subset to construct independence

classifier. Let m be the number of elements in A. The oracle classifier can be written as

δ̂orc(x) =
p∑

j=1

α̂j(xj − µ̂j)1{|αj |>a}.

The misclassification rate is approximately

1− Φ
(∑

j∈A α2
j + m(n1 − n2)/(n1n2)

2{nm/(n1n2) +
∑

j∈A α2
j}1/2

)
,(4.1)

when n√
m

∑
j∈A α2

j → ∞ and m → ∞. This is straightforward from Theorem 4. In

practice, we do not have such an oracle, and selecting the subset A is difficult. A

simple procedure is to use the feature annealed independence rule based on the hard

thresholding:

δ̂b
FAIR(x) =

p∑

j=1

α̂j(xj − µ̂j)1{|α̂j |>b}.

We study the classification error of FAIR and the impact of the threshold b on the

classification result in the following theorem.

Theorem 5 Suppose that maxj∈Ac |αj | < bn and log(p−m)/[n(bn−maxj∈Ac |αj |)2] → 0

with m = |A|. Moreover, assume that n√
m

∑
j∈A α2

j →∞ and
∑

j∈A |αj |/[
√

n
∑

j∈A α2
j ] →

0. Then

W (δ̂bn
FAIR, θ) ≤ 1− Φ

((1 + oP (1))
∑

j∈A α2
j + nm(n1n2)−1 −mb2

n

2{(1 + oP (1))
∑

j∈A α2
j + nm(n1n2)−1}1/2

)
.

Notice that the upper bound of W (δ̂bn
FAIR,θ) in Theorem 5 is greater than the clas-

sification error in Theorem 4, and the magnitude of difference depends on mb2
n. This
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is expected as estimating the set A increases the classification error. These results are

similar to those in Fan (1996) for high-dimensional hypothesis testing.

When the common covariance matrix is different from the identity, FAIR takes a

slightly different form to adapt to the unknown componentwise variance:

δ̂FAIR(x) =
p∑

j=1

α̂j(xj − µ̂j)/σ̂2
j 1{
√

n/(n1n2)|Tj |>b},(4.2)

where Tj is the two sample t-statistic. It is clear from (4.2) that FAIR works the same

way as that we first sort the features by the absolute values of their t-statistics in the

descending order, and then take out the first m features to classify the data. The

number of features can be selected by minimizing the upper bound of the classification

error given in Theorem 1. The optimal m in this sense is

m1 = argmax1≤m≤p

1
λm

max

[
∑m

j=1 α2
j/σ2

j + m(1/n2 − 1/n1)]2

nm/(n1n2) +
∑m

j=1 α2
j/σ2

j

,

where λm
max is the largest eigenvalue of the correlation matrix Rm of the truncated

observations. It can be estimated from the samples:

m̂1 = argmax1≤m≤p

1

λ̂m
max

[
∑m

j=1 α̂2
j/σ̂2

j + m(1/n2 − 1/n1)]2

nm/(n1n2) +
∑m

j=1 α̂2
j/σ̂2

j

(4.3)

= argmax1≤m≤p

1

λ̂m
max

n[
∑m

j=1 T 2
j + m(n1 − n2)/n]2

mn1n2 + n1n2
∑m

j=1 T 2
j

.

Note that the factor λm
max in (4.3) increases with m, which makes m̂1 usually smaller

than m̂0.

5 Numerical Studies

In this section we use a simulation study and three real data analyses to illustrate our

theoretical results and to verify the performance of our newly proposed classifier FAIR.
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5.1 Simulation Study

We first introduce the model. The covariance matrices Σ1 and Σ2 for the two classes

are chosen to be the same. For the distribution of the error εij in (2.1), we use the

same model as that in Fan, Hall and Yao (2006). Specifically, features are divided into

three groups. Within each group, features share one unobservable common factor with

different factor loadings. In addition, there is an unobservable common factor among all

the features across three groups. For simplicity, we assume that the number of features

p is a multiple of 3. Let Zij be a sequence of independent N(0, 1) random variables,

and χ2
ij be a sequence of independent random variables of the same distribution as

(χ2
d − d)/

√
2d with χ2

d the Chi-square distribution with degrees of freedom d. In the

simulation we set d = 6.

Let {aj} and {bj} be factor loading coefficients. Then the error in (2.1) is defined as

εij =
Zij + a1jχ1i + a2jχ2i + a3jχ3i + bjχ4i

(1 + a2
1j + a2

2j + a2
3j + b2

j )1/2
, i = 1, · · · , nk, j = 1, · · · , p,

where aij = 0 except that a1j = aj for j = 1, · · · , p/3, a2j = aj for j = (p/3) +

1, · · · , 2p/3, and a3j = aj for j = (2p/3)+1, · · · , p. Therefore, Eεij = 0 and var(εij) = 1,

and in general, within group correlation is greater than the between group correlation.

The factor loadings aj and bj are independently generated from uniform distributions

U(0, 0.4) and U(0, 0.2). The mean vector µ1 for class C1 is taken from a realization of

the mixture of a point mass at 0 and a double-exponential distribution:

(1− c)δ0 +
1
2
c exp(−2|x|),

where c ∈ (0, 1) is a constant. In the simulation, we set p = 4, 500 and c = 0.02. In

other words, there are around 90 signal features on an average, many of which are weak

signals. Without loss of generality, µ2 is set to be 0. Figure 1 shows the true mean
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Figure 1: True mean difference vector α. x-axis represents the dimensionality, and y-axis shows
the values of corresponding entries of α.

difference vector α, which is fixed across all simulations. It is clear that there are only

very few features with signal levels exceeding 1 standard deviation of the noise.

With the parameters and model above, for each simulation, we generate n1 = 30

training data from class C1 and n2 = 30 training data from C2. In addition, separate 200

samples are generated from each of the two classes in each simulation, and these 400

vectors are used as test samples. We apply our newly proposed classifier FAIR to the

simulated data. Specifically, for each feature, the t-test statistic in (3.1) is calculated

using the training sample. Then the features are sorted in the decreasing order of the

absolute values of their t-statistics. We then examine the impact of the number of

features m on the misclassification rate. In each simulation, with m ranging from 1

to 4500, we construct the feature annealed independence classifiers using the training

samples, and then apply these classifiers to the 400 test samples. The classification errors

are compared to those of the independence rule with the oracle ordering information,
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Figure 2: Number of features versus misclassification rates. The solid curves represent the
averages of classification errors across 100 simulations. The dashed curves are 2 standard errors
away from the solid curves. The x-axis represents the number of features used in the classification,
and the y-axis shows the misclassification rates. (a) The features are ordered in a way such that
the corresponding t-statistics are decreasing in absolute values. (b) The amplified plot of the
first 80 values of x-axis in plot (a). (c) The same as (a) except that the features are arranged in
a way such that the corresponding true mean differences are decreasing in absolute values. (d)
The amplified plot of the first 80 values of x-axis in plot (c).

which is constructed by repeating the above procedure except that in the first step the

features are ordered by their true signal levels, |α|, instead of by their t-statistics.

The above procedure is repeated 100 times, and averages and standard errors of

the misclassification rates (based on 400 test samples in each simulation) are calculated

across the 100 simulations. Note that the average of the 100 misclassification rates is

indeed computed based on 100× 400 testing samples.

Figure 2 depicts the misclassification rate as a function of the number of features m.

The solid curves represent the average of classification rates across the 100 simulations,

and the corresponding dashed curves are 2 standard errors (i.e. the standard deviation of

100 misclassification rates divided by 10) away from the solid one. The misclassification
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rates using the first 80 features in Figure 2(a) are zoomed in Figure 2(b). Figures

2(c) and 2(d) are the same as 2(a) and 2(b) except that the features are arranged in

the decreasing order of |α|, i.e., the results are based on the oracle-assisted feature

annealed independence classifier. From these plots we see that the classification results

of FAIR are close to those of the oracle-assisted independence classifier. Moreover, as

the dimensionality m grows, the misclassification rate increases steadily due to the noise

accumulation. When all the features are included, i.e. m = 4500, the misclassification

rate is 0.2522, whereas the minimum classification errors are 0.0128 in plot 2(b) and

0.0020 in plot 2(d). These results are consistent with Theorem 1. We also tried to

decrease the signal levels, i.e., the mean of the double exponential distribution, or to

increase the dimensionality p, and found that the classification error tend to 0.5 when

all the dimensions are included. Comparing Figures 2(a) and 2(b) to Figures 2(c) and

2(d), we see that the features ordered by t-statistics has higher misclassification rates

than those ordered by the oracle. Also, using t-statistics results in larger minimum

classification errors (see plots 2(b) and 2(d)), but the differences are not very large.

Figure 3 shows the classification errors of the independence rule based on projected

samples onto randomly chosen directions across 100 simulations. Specifically, in each

of the simulations in Figure 2, we generate a direction vector a randomly from the

(p − 1)-dimensional unit sphere, then project all the data in that simulation onto the

direction a, and finally apply the Fisher discriminant to the projected data (see (2.3)).

The average of these misclassification rates is 0.4986 and the corresponding standard

deviation is 0.0318. These results are consistent with our Theorem 2.

Finally, we examine the effectiveness of our proposed method (4.3) for selecting fea-

tures in FAIR. In each of the 100 simulations, we apply (4.3) to choose the number of

features and compute the resulting misclassification rate based on 400 test samples. We
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Figure 3: Classification errors of the independence rule based on projected samples onto ran-
domly chosen directions over 100 simulations.
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Figure 4: The thick curves correspond to FAIR, while the thin curves correspond to the nearest
shrunken centroids method. (a) The numbers of features chosen by (4.3) and by the nearest
shrunken centroids method over 100 simulations. (b) Corresponding classification errors based
on the optimal number of features chosen in (a) over 100 simulations.
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also use the nearest shrunken centroids of Tibshirani et al. (2003) to select the impor-

tant features. Figure 4 summarizes these results. The thin curves correspond to the

nearest shrunken centroids method, and the thick curves correspond to FAIR. Figure

4(a) presents the number of features calculated from these two methods, and Figure 4(b)

shows the corresponding misclassification rates. For our newly proposed classifier FAIR,

the average of the optimal number of features over 100 simulations is 29.71, which is

very close to the smallest number of features with the minimum misclassification rate in

Figure 2(d). The misclassification rates of FAIR in Figure 4(b) have average 0.0154 and

standard deviation 0.0085, indicating the outstanding performance of FAIR. Nearest

shrunken centroids method is unstable in selecting features. Over the 100 simulations,

there are several realizations in which it chooses plenty of features. We truncated Fig-

ure 4 to make it easier to view. The average number of features chosen by the nearest

shrunken centroids is 28.43, and the average classification error is 0.0216, with corre-

sponding standard deviation 0.0179. It is clear that nearest shrunken centroids method

tends to choose less features than FAIR, but the misclassification rates are larger.

5.2 Real Data Analysis

5.2.1 Leukemia Data

Leukemia data from high-density Affymetrix oligonucleotide arrays were previously ana-

lyzed in Golub et al.(1999), and are available at http://www.broad.mit.edu/cgi-bin/

cancer/datasets.cgi. There are 7129 genes and 72 samples coming from two classes:

47 in class ALL (acute lymphocytic leukemia) and 25 in class AML (acute mylogenous

leukemia). Among these 72 samples, 38 (27 in class ALL and 11 in class AML) are set

to be training samples and 34 (20 in class ALL and 14 in class AML) are set as test

samples.
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Before classification, we standardize each sample to zero mean and unit variance as

done by Dudoit et al.(2002). The classification results from the nearest shrunken cen-

troids (NSC hereafter) method and FAIR are shown in Table 1. The nearest shrunken

centroids method picks up 21 genes and makes 1 training error and 3 test errors, while

our method chooses 11 genes and makes 1 training error and 1 test error. Tibshirani et

al.(2002) proposed and applied the nearest shrunken centroids method to the unstan-

dardized Leukemia dataset. They chose 21 genes and made 1 training error and 2 test

errors. Our results are still superior to theirs.

To further evaluate the performance of the two classifiers, we randomly split the 72

samples into training and test sets. Specifically, we set approximately 100γ% of the

observations from class ALL and 100γ% of the observations from class AML as training

samples, and the rest as test samples. FAIR and NSC are applied to the training data,

and their performances are evaluated by the test samples. The above procedure is

repeated 100 times for γ = 0.4, 0.5 and 0.6, respectively, and the distributions of test

errors of FAIR, NSC and the independence rule without feature selection are summarized

in Figure 5. In each of the splits, we also calculated the difference of test errors between

NSC and FAIR, i.e., the test error of FAIR minus that of NSC, and the distribution

is summarized in Figure 5. The top panel of Figure 6 shows the number of features

selected by FAIR and NSC for γ = 0.4. The results for the other two values of γ are

similar so we do not present here to save the space. From these figures we can see that

the performance of independence rule improves significantly after feature selection. The

classification errors of NSC and FAIR are approximately the same. As we have already

noticed in the simulation study, NSC is not good with feature selection, that is, the

number of features selected by NSC is very large and unstable, while the number of

features selected by FAIR is quite reasonable and stable over different random splits.
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Figure 5: Leukemia data. Boxplots of test errors of FAIR, NSC and the independence rule
without feature selection over 100 random splits of 72 samples, where 100γ% of the samples
from both classes are set as training samples. The three plots from left to right correspond to
γ = 0.4, 0.5 and 0.6, respectively. In each boxplot above, “FAIR” refers to the test errors of the
feature annealed independent rule; “NSC” corresponds to the test errors of nearest shrunken
centroids method; “diff.” means the difference of the test errors of FAIR and those of NSC; and
“IR” corresponds the test errors of independence rule without feature selection.

Clearly, the independent rule without feature selection performs poorly.

Table 1: Classification errors of Leukemia data set

Method Training error Test error No. of selected genes

Nearest shrunken centroids 1/38 3/34 21

FAIR 1/38 1/34 11

5.2.2 Lung Cancer Data

We evaluate our method by classifying between malignant pleural mesothelioma (MPM)

and adenocarcinoma (ADCA) of the lung. Lung cancer data were analyzed by Gordon
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Figure 6: Leukemia, Lung Cancer, and Prostate data sets. The number of features selected by
FAIR and NSC over 100 random splits of the total samples. In each split, 100γ% of the samples
from both class are set as training samples, and the rest are used as test samples. The three
plots from top to bottom correspond to the Leukemia data with γ = 0.4, the Lung Cancer data
with γ = 0.5 and the Prostate cancer data with γ = 0.6, respectively. The thin curves show the
results from NSC, and the thick curves correspond to FAIR. The plots are truncated to make
them easy to view.

et al.(2002) and are available at http://www.chestsurg.org. There are 181 tissue

samples (31 MPM and 150 ADCA). The training set contains 32 of them, with 16 from

MPM and 16 from ADCA. The rest 149 samples are used for testing (15 from MPM

and 134 from ADCA). Each sample is described by 12533 genes.

As in the Leukemia data set, we first standardize the data to zero mean and unit

variance, and then apply the two classification methods to the standardized data set.

Classification results are summarized in Table 2. Although FAIR uses 5 more genes

than the nearest shrunken centroids method, it has better classification results: both

methods perfectly classify the training samples, while our classification procedure has

smaller test error.
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We follow the same procedure as that in Leukemia example to randomly split the

181 samples into training and test sets. FAIR and NSC are applied to the training

data, and the test errors are calculated using the test data. The procedure is repeated

100 times with γ = 0.4, 0.5 and 0.6, respectively, and the test error distributions of

FAIR, NSC and the independence rule without feature selection can be found in Figure

7. We also present the difference of the test errors between FAIR and NSC in Figure

7. The numbers of features used by FAIR and NSC with γ = 0.5 are shown in the

middle panel of Figure 6. Figure 7 shows again that feature selection is very important

in high dimensional classification. The performance of FAIR is close to NSC in terms

of classification error (Figure 7), but FAIR is stable in feature selection, as shown in

the middle panel of Figure 6. One possible reason of Figure 7 might be that the signal

strength in this Lung Cancer dataset is relatively weak, and more features are needed

to obtain the optimal performance. However, the estimate of the largest eigenvalue is

not accurate anymore when the number of features is large, which results in inaccurate

estimates of m1 in (4.3).

Table 2: Classification errors of Lung Cancer data

Method Training error Test error No. of selected genes

Nearest shrunken centroids 0/32 11/149 26

FAIR 0/32 7/149 31

5.2.3 Prostate Cancer Data

The last example uses the prostate cancer data studied in Singh et al.(2002). The data

set is available at http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. The

training data set contains 102 patient samples, 52 of which (labeled as “tumor”) are
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Figure 7: Lung cancer data. The same as Figure 5 except that the data set is different.

prostate tumor samples and 50 of which (labeled as “Normal”) are prostate samples.

There are around 12600 genes. An independent set of test samples is from a different

experiment and has 25 tumor and 9 normal samples.

We preprocess the data by standardizing the gene expression data as before. The

classification results are summarized in Table 3. We make the same test error as and a

bit larger training error than the nearest shrunken centroids method, but the number

of selected genes we use is much less.

The samples are randomly split into training and test sets in the same way as before,

the test errors are calculated, and the number of features used by these two methods

are recorded. Figure 8 shows the test errors of FAIR, NSC and the independence rule

without feature selection, and the difference of the test errors of FAIR and NSC. The

bottom panel of Figure 6 presents the numbers of features used by FAIR and NSC in

each random split for γ = 0.6. As we mentioned before, the plots for γ = 0.4 and 0.5 are
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Figure 8: Prostate cancer data. The same as Figure 5 except that the data set is different.

similar so we omit them in the paper. The performance of FAIR is better than that of

NSC both in terms of classification error and in terms of the selection of features. The

good performance of FAIR might be caused by the strong signal level of few features in

this data set. Due to the strong signal level, FAIR can attain the optimal performance

with small number of features. Thus, the estimate of m1 in (4.3) is accurate and hence

the actual performance of FAIR is good.

Table 3: Classification errors of Prostate Cancer data set

Method Training error Test error No. of selected genes

Nearest shrunken centroids 8/102 9/34 6

FAIR 10/102 9/34 2
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6 Conclusion

This paper studies the impact of high dimensionality on classifications. To illustrate the

idea, we have considered the independence classification rule, which avoids the difficulty

of estimating large covariance matrix and the diverging condition number frequently

associated with the large covariance matrix. When only a subset of the features capture

the characteristics of two groups, classification using all dimensions would intrinsically

classify the noises. We prove that classification based on linear projections onto almost

all directions performs nearly the same as random guessing. Hence, it is necessary to

choose direction vectors which put more weights on important features.

The two-sample t-test can be used to choose the important features. We have shown

that under mild conditions, the two sample t-test can select all the important features

with probability one. The features annealed independence rule using hard thresholding,

FAIR, is proposed, with the number of features selected by a data-driven rule. An upper

bound of the classification error of FAIR is explicitly given. We also give suggestions on

the optimal number of features used in classification. Simulation studies and real data

analysis support our theoretical results convincingly.

7 Appendix

Proof of Theorem 1. For θ ∈ Γ, Ψ defined in (2.2) can be bounded as

Ψ ≥ (µ1 − µ̂)′D̂−1(µ̂1 − µ̂2)√
b0(µ̂1 − µ̂2)′D̂−1DD̂−1(µ̂1 − µ̂2)

,(7.1)

where we have used the assumption that λmax(R) ≤ b0. Denote by

Ψ̃ =
(µ1 − µ̂)′D̂−1(µ̂1 − µ̂2)√

(µ̂1 − µ̂2)′D̂−1DD̂−1(µ̂1 − µ̂2)
.
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We next study the asymptotic behavior of Ψ̃.

Since Condition 1(b) in Section 3 is satisfied automatically for normal distribution,

by Lemma 2 below we have D̂ = D(1 + oP (1)), where oP (1) holds uniformly across all

diagonal elements. Thus, the right hand side of (7.1) can be written as

1√
b0

(µ1 − µ̂)′D̂−1(µ̂1 − µ̂2)√
(µ̂1 − µ̂2)′D−1(µ̂1 − µ̂2)

(1 + oP (1)).

We first consider the denominator. Notice that it can be decomposed as

(µ̂1 − µ̂2)
′D−1(µ̂1 − µ̂2)(7.2)

=α′D−1α + 2
∑

αj
ε̂1j − ε̂2j

σ2
j

+
∑ (ε̂1j − ε̂2j)2

σ2
j

=α′D−1α + 2
∑ αj

σ2
j

(ε̂1j − ε̂2j) +
∑ (ε̂1j − ε̂2j)2

σ2
j

≡α′D−1α + 2(1 + oP (1))I1 + I2,

where σ2
j is the j-th diagonal entry of D, σ̂2

j is the j-th diagonal entry of D̂, and

ε̂kj =
∑nk

i=1 εkij/nk, k = 1, 2. Notice that ε̂1 − ε̂2 ∼ N(0, n
n1n2

Σ). By singular value

decomposition we have

R = QRVRQ′
R,

where QR is orthogonal matrix and VR = diag{λR,1, · · · , λR,p} be the eigenvalues of the

correlation matrix R. Define ε̃ =
√

n1n2/nV−1/2
R Q′

RD−1/2(ε̂1 − ε̂2), then ε̃ ∼ N(0, I).

Hence,

I2 = (ε̂1 − ε̂2)′D−1(ε̂1 − ε̂2) =
n

n1n2
ε̃′VRε̃.

Since
∑p

i=1 λR,i = p and λR,i ≥ 0 for all i = 1, · · · , p, we have 1
p2

∑p
i=1 λ2

R,i < ∞. By

weak law of large number we have

n1n2I2/[pn] P−→ 1 as n →∞, p →∞.(7.3)

28



Next, we consider I1. Note that I1 has the distribution I1 ∼ N(0, n
n1n2

α′D−1ΣD−1α).

Since λmax ≤ b0, nα′D−1α ≥ nCp →∞ and

α′D−1ΣD−1α = α′D−1/2RD−1/2α ≤ λmax(R)α′D−1α,

we have I1 = α′D−1αoP (1). This together with (7.2) and (7.3) yields

n1n2

pn
(µ̂1 − µ̂2)

′D̂−1(µ̂1 − µ̂2) = 1 +
n1n2

pn

p∑

j=1

α2
j

σ2
j

(1 + oP (1)).(7.4)

Now, we consider the numerator. It can be decomposed as

(µ1 − µ̂)′D̂−1(µ̂1 − µ̂2)

=
1
2
α′D̂−1α−

∑ αj

σ̂2
j

(ε̂2j)− 1
2
(1 + oP (1))

∑
ε̂21j/σ2

j +
1
2
(1 + oP (1))

∑
ε̂22j)/σ2

j

≡1
2
α′D−1α(1 + oP (1))− I3 − 1

2
(1 + oP (1))I4 +

1
2
(1 + oP (1))I5.

Denote by Ĩ3 =
∑ αj

σ2
j
(ε̂2j). Note that

max |αj

σ2
j

(ε̂2j)− αj

σ̂2
j

(ε̂2j)| ≤ max |σ
2
j

σ̂2
j

− 1|max |αj

σ2
j

ε̂2j | = oP (1)max |αj

σ2
j

ε̂2j |.(7.5)

Define Fj =
√

n2
αj

σ2
j
ε̂2j/α′D−1α, then σ2

Fj
≡ var(Fj) ≤ 1 for all j. For the normal

distribution, we have the following tail probability inequality

1− Φ(x) ≤ 1√
2π

1
x

e−x2/2.

Since Fj ∼ N(0, σ2
Fj

), by the above inequality we have

P (|Fj | ≥ x) ≤ 2 exp{− x2

2C
}.

with C some positive constant, for all x > 0 and j = 1, · · · , p. By Lemma 2.2.10 of van

de Vaart and Wellner (1996, P102), we have

(α′D−1α)−1E max |αj

σ2
j

ε̂2j | = n−1
2 E max

j≤p
|Fj | ≤ K

√
C log(p + 1)/n2

P−→ 0,
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where K is some universal constant. This together with (7.5) ensures that

(α′D−1α)−1 max |αj

σ2
j

(ε̂2j)− αj

σ̂2
j

(ε̂2j)| = oP (1)

Hence,

I3 = Ĩ3 + α′D−1αoP (1).(7.6)

Now we only need to consider Ĩ3. Note that Ĩ3 =
∑ αj

σ2
j
ε̂2j ∼ N(0, 1

n2
α′D−1ΣD−1α).

Since the variance term can be bounded as

α′D−1ΣD−1α ≤ λmax(R)α′D−1α,

By the assumption that nα′D−1α → ∞ and λmax(R) is bounded, we have Ĩ3 =

1
2α′D−1αoP (1). Combining this with (7.6) leads to

I3 =
1
2
α′D−1αoP (1)

We now examine I4 and I5. By the similar proof to (7.3) above we have

I4 = p/n1 + oP

(√
np/(n1n2)

)
and I5 = p/n2 + oP

(√
np/(n1n2)

)
.

Thus the numerator can be written as

(µ1− µ̂)′D̂−1(µ̂1− µ̂2) = (1+ oP (1))
1
2

∑
α2

j/σ2
j − (p/n1− p/n2)/2+ oP (

√
np/(n1n2)).

and by (7.4)

Ψ̃ =

√
n1n2
pn

∑
α2

j/σ2
j (1 + oP (1)) +

√
p/(nn1n2)(n1 − n2)

2
{

1 + n1n2
pn

∑
α2

j/σ2
j (1 + oP (1))

}1/2
.

Since ax√
1+a2x

is an increasing function of x and
∑ α2

j

σ2
j
≥ Cp, in view of (7.1) and the

definition of the parameter space Γ, we have

W (δ̂) = 1− Φ
( [n1n2/(pn)]1/2Cp{1 + oP (1) + p(n1−n2)

n1n2Cp
}

2
√

b0{1 + n1n2/(pn)Cp(1 + oP (1))}1/2

)
.
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If p/(nCp) → 0, then W (δ̂) = 1− Φ
(

1
2 [n1n2/(pnb0)]1/2Cp{1 + oP (1)}

)
. Furthermore, if

{
n1n2
pn

}1/2
Cp → C0 with C0 some constant, then

W (δ̂) P−→ 1− Φ
( C0

2
√

b0

)
;

This completes the proof. ¥

Proof of Theorem 2. Suppose we have a new observation X from class C1. Then

the posterior classification error of using δ̂a(·) is

W (δa,θ) =Ea[P (δa(X) < 0|Y ki, i = 1, · · · , nk, k = 1, 2,a)]

=1−EaΦ(Ψasign(a′µ̂1 − a′µ̂2)),

where Ψa = a′µ1−a′ bµ√
a′Σa

, Φ(·) is the standard Gaussian distribution function, and Ea

means expectation taken with respect to a. We are going to show that

Ψa
P−→ 0,(7.7)

which together with the continuity of Φ(·) and the dominated convergence theorem gives

lim
p

EaΦ(Ψasign(a′µ̂1 − a′µ̂2)) = 1/2.

Therefore, the posterior error W (δ̂a, θ) is no better than the random guessing.

Now, let us prove (7.7). Note that the random vector a can be written as

a = Z/‖Z‖,

where Z is a p-dimensional standard Gaussian distributed random vector, independent

of all the observations Y ki and X. Therefore,

Ψa =
a′µ1 − a′µ̂√

a′Σa
=

Z′α/
√

p−
√

n
n1n2pZ

′[
√

n1n2
n (ε̂1 + ε̂2)]

2
√

Z′ΣZ/p
,(7.8)
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where α = µ1−µ2 and ε̂k = 1
nk

∑nk
i=1 εki, k = 1, 2. By the singular value decomposition

we have

Σ = Q′VQ,

where Q is an orthogonal matrix and V = diag{λ1, · · · , λp} is a diagonal matrix. Let

Z̃ = QZ, then Z̃ is also a p-dimensional standard Gaussian random vector. Hence the

denominator of Ψa can be written as

2
√

Z′ΣZ/p = 2
(1
p

p∑

j=1

λjZ̃
2
j

)1/2
,

where Z̃j is the j-th entry of Z̃. Since it is assumed that limp
1
p2

∑p
j=1 λ2

j < ∞ and

limp
1
p

∑p
j=1 λj = τ for some positive constant τ , by the weak law of large numbers, we

have

1
p

G∑

j=1

λjZ̃
2
j

P−→ τ.(7.9)

Next, we study the numerator of Ψa in (7.8). Since 1
p

∑p
j=1 α2

j → 0, the first term

of the numerator converges to 0 in probability, i.e.,

Z′α/
√

p
P−→ 0.(7.10)

Let ε =
√

n1n2
n (ε̂1 + ε̂2) and ε̃ = V−1/2Qε, then ε̃ has distribution N(0, I) and is

independent of Z̃. The second term of the numerator can be written as

Z′[
√

n1n2/n(ε̂1 + ε̂2)] = Z̃
′
V1/2ε̃ =

p∑

j=1

√
λjZ̃j ε̃j .

Since n
n1n2p

∑p
j=1 λj → 0 < ∞, it follows from the weak law of large number that

√
n

n1n2p

p∑

j=1

√
λjZ̃j ε̃j

P−→ 0.

This together with (7.8), (7.9), and (7.10) completes the proof. ¥

We need the the following two lemmas to prove Theorem 3.
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Lemma 1 [Cao(2005)] Let n = n1 + n2. Assume that there exist 0 < c1 ≤ c2 < 1

such that c1 ≤ n1/n2 ≤ c2. Let T̃j = Tj − µj1−µj2q
S2

1j/n1+S2
1j/n2

. Then for any x ≡ x(n1, n2)

satisfying x →∞ and x = o(n1/2),

log P (T̃j ≥ x) ∼ −x2/2, as n1, n2 →∞.

If in addition, if we have only E|Y1ij |3 < ∞ and E|Y2ij |3 < ∞, then

P (T̃j ≥ x)
1− Φ(x)

= 1 + O(1)(1 + x)3n−1/2d3, for 0 ≤ x ≤ n1/6/d,

where d = (E|Y1ij |3 + E|Y2ij |3)/(var(Y1ij) + var(Y2ij))3/2 and O(1) is a finite constant

depending only on c1 and c2. In particular,

P (T̃j ≥ x)
1− Φ(x)

→ 1

uniformly in x ∈ (0, o(n1/6)).

Lemma 2 Suppose Condition 1(b) holds and log p = o(n). Let S2
kj be the sample vari-

ance defined in Section 1, and σ2
kj be the variance of the j-th feature in class Ck. Suppose

minσ2
kj is bounded away from 0. Then we have the following uniform convergence result

max
k=1,2, j=1,··· ,p

|S2
kj − σ2

kj | P−→ 0.

Proof of Lemma 2. For any ε > 0, we know when nk is very large,

P ( max
k=1,2, j=1,··· ,p

|S2
kj − σ2

kj | > ε) ≤
∑

k=1,2

p∑

j=1

P (|S2
kj − σ2

kj | > ε)

≤
∑

k=1,2

s∑

j=1

P
(
|

nk∑

i=1

(ε2kij − σ2
kj)| > nkε/3

)
+

∑

k=1,2

s∑

j=1

P
(
|

nk∑

i=1

εkij | > nk

√
ε/2

)

≡ I1 + I2.(7.11)
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It follows from Bernstein’s inequality that

P
(
|

nk∑

i=1

(ε2kij − σ2
kj)| > nkε/3

)
≤ 2 exp{−1

2
n2

kε
2

9ν1 + 3M1nkε
},

and

P
(
|

nk∑

i=1

εkij | > nk

√
ε/2

)
≤ 2 exp{−1

2
n2

kε

4ν2 + 2M2nk
√

ε
},

Since log p = o(n), we have I1 = o(1) and I2 = o(1). These together with (7.11)

completes the proof of Lemma 2. ¥

Proof of Theorem 3. We devidte the proof into two parts. (a) Let us first look at

the probability P (maxj>s |Tj | > x). Clearly,

P (max
j>s

|Tj | > x) ≤
p∑

j=s+1

P (|Tj | ≥ x).(7.12)

Note that for all j > s, αj = µj1 − µj2 = 0. By Condition 1(b) and Lemma 1, the

following inequality holds for 0 ≤ x ≤ n1/6/d,

P (Tj ≥ x) = (1− Φ(x))(1 + C(1 + x)3n−1/2d3),

where C is a constant that only depends on c1 and c2, and

d = (E|Y1ij |3 + E|Y2ij |3)/(σ2
1j + σ2

2j)
3/2

with σ2
kj the j-th diagonal element of Σk. For the normal distribution, we have the

following tail probability inequality

1− Φ(x) ≤ 1√
2π

1
x

e−x2/2.

This together with the symmetry of Tj gives

P (|Tj | ≥ x) ≤ 2
1√
2π

1
x

e−x2/2(1 + C(1 + x)3n−1/2d3).
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Combining the above inequality with (7.12), we have

∑

j>s

P (|Tj | ≥ x) ≤ (p− s)
2√
2π

1
x

e−x2/2(1 + C(1 + x)3n−1/2d3).

Since log(p− s) = o(nγ) with 0 < γ < 1
3 , if we let x ∼ cnγ/2, then

∑

j>s

P (|Tj | ≥ x) → 0,

which along with (7.12) yields

P (max
j>s

|Tj | > x) → 0.

(b) Next, we consider P (minj≤s |Tj | ≤ x). Notice that for j ≤ s, αj = µ1j −µ2j 6= 0.

Let ηj = αjq
S2

1j/n1+S2
1j/n2

and define

T̃j = Tj − ηj .

Then following the same lines as those in (a), we have

∑

j≤s

P (|T̃j | ≥ x) ≤ s
2√
2π

1
x

e−x2/2(1 + C(1 + x)3n−1/2d3) → 0.

It follows from Lemma 2 that,

max
j≤s

|S2
kj − σ2

kj | P−→ 0, k = 1, 2.

Hence, uniformly over j = 1, · · · , s, we have

ηj =
|αj |√

σ2
1j/n1 + σ2

2j/n2

(1 + oP (1)).

Therefore,

min
j≤s

|ηj | = min
j≤s

√
n1|αj |√

σ2
1j + σ2

2jn1/n2

(1 + oP (1)) ≥ min
j≤s

√
n1|αj |√

σ2
1j + c2σ2

2j

(1 + oP (1))
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with c2 defined in Theorem 3. Let α0 = minj≤s |µj1−µj2|/
√

σ2
1j + c2σ2

2j . Then it follows

that

P (min
j≤s

|Tj | ≤ x) ≤ P (max
j≤s

|T̃j | ≥ min
j≤s

|ηj | − x) ≤ P (max
j≤s

|T̃j | ≥ √
n1α0(1 + oP (1))− x).

By part (a), we know that x ∼ cnγ/2 and log(p−s) = o(nγ). Thus if α0 ∼ min
j≤s

|µj1−µj2|q
σ2

j1+σ2
j2

=

n−γβn for some βn →∞, then similarly to part (a), we have

P (min
j≤s

|Tj | ≤ x) → 0.

Combination of part (a) and part (b) completes the proof. ¥

Proof of Theorem 4. The classification error of the truncated classifier δ̂m
NC is

W (δ̂m
NC, θ) = 1− Φ

(∑m
j=1 α̂j(µ1j − µ̂j)∑m

j=1 α̂2
j

)
.

We first consider the denominator. Note that α̂j ∼ N(αj ,
n

n1n2
). It can be shown that

( 4n

n1n2

m∑

j=1

α2
j +

2mn2

n2
1n

2
2

)−1/2
m∑

j=1

(α̂2
j − α2

j −
n

n1n2
) D−→ N(0, 1),

which together with the assumption n√
m

∑m
j=1 α2

j →∞ gives

m∑

j=1

α̂2
j =

m∑

j=1

α2
j +

mn

n1n2
+ { 4n

n1n2

m∑

j=1

α2
j +

2mn2

n2
1n

2
2

}1/2Op(1)

= (1 + oP (1))
m∑

j=1

α2
j +

mn

n1n2
.

Next, let us look at the numerator. We decompose it as

(7.13)
m∑

j=1

α̂j(µ1j − µ̂j) =
1
2

m∑

j=1

α2
j −

m∑

j=1

αj ε̂2j − 1
2

m∑

j=1

(ε̂21j − ε̂22j).
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Since the second term above has the distribution N(0,
∑m

j=1 α2
j/n2), it follows from the

assumption n
∑m

j=1 α2
j →∞ that

m∑

j=1

αj ε̂2j = oP (1)
m∑

j=1

α2
j .

The third term in (7.13) can be written as
m∑

j=1

(ε̂21j − ε̂22j) =
m

n1
− m

n2
+ Op(

nm

n1n2
) =

m(n2 − n1)
n1n2

+ oP (1)
m∑

j=1

α2
j .

Hence the numerator is
m∑

j=1

α̂j(µ1j − µ̂j) =
m(n2 − n1)

n1n2
+ (1 + oP (1))

m∑

j=1

α2
j .

Therefore, the classification error is

W (δ̂m
NC,θ) = 1− Φ

((1 + oP (1))
∑m

j=1 α2
j + m(n1 − n2)/(n1n2)

2{(1 + oP (1))
∑m

j=1 α2
j + mn/(n1n2)}1/2

)
.

This concludes the proof. ¥

Proof of Theorem 5. Note that the classification error of δ̂bn
FAIR is

W (δ̂bn
FAIR(x), θ) = 1− Φ

(∑
j(µ1j − µ̂j)α̂j1{|α̂j | ≥ bn}∑

j α̂2
j1{|α̂j | ≥ bn}

)
≡ 1− Φ(ΨH).

We divide the proof into two parts: the numerator andthe denominator.

(a) First, we study the numerator of ΨH . It can be decomposed as

∑

j

(µ1j − µ̂j)α̂j1{|α̂j | ≥ bn} = I1 + I2,

where I1 =
∑

j∈A(µ1j − µ̂j)α̂j1{|α̂j | ≥ bn} and I2 =
∑

j∈Ac(µ1j − µ̂j)α̂j1{|α̂j | ≥ bn}
with Ac the complementary of the set A. Note that

I2 =
1
2

∑

j∈Ac

α2
j1{|α̂j | ≥ bn} −

∑

j∈Ac

αj ε̂2j1{|α̂j | ≥ bn} − 1
2

∑

j∈Ac

(ε̂21j − ε̂22j)1{|α̂j | ≥ bn}

≡ 1
2
I2,1 − I2,2 − 1

2
I2,3.
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Since α̂j ∼ N(αj ,
n

n1n2
), it follows from the normal tail probability inequality that for

every j ∈ Ac and bn > maxj∈Ac |αj |,

P (|α̂j | ≥ bn) ≤ P (|α̂j − αj | ≥ bn −max
j∈Ac

|αj |)(7.14)

≤ M
exp{−n1n2(bn −maxj∈Ac |αj |)2/(2n)}√

n1n2n−1(bn −maxj∈Ac |αj |)
,

where M is a generic constant. Thus for every ε > 0, if log(p−m)/[n(bn−maxj∈Ac |αj |)2] →
0 and maxj∈Ac |αj | < bn, we have

P (|I2,1| ≥ ε) ≤ ε−1
∑

j∈Ac

α2
jP (|α̂j | ≥ bn)

≤ M max
j∈Ac

α2
j

(p−m)
ε

exp{−n1n2(bn −maxj∈Ac |αj |)2/(2n)}√
n1n2n−1(bn −maxj∈Ac |αj |)

,

which tends to zero. Hence,

I2,1
P−→ 0(7.15)

We next consider I2,2. Since E(ε̂2j)2 = 1
n2

, log(p−m)/[n(bn −maxj∈Ac |αj |)2] → 0,

and maxj∈Ac |αj | < bn, we have

P (|I2,2| ≥ ε) ≤ε−1
∑

j∈Ac

E|ε̂2jαj1{|α̂j | ≥ bn}|

≤ε−1
∑

j∈Ac

{E(ε̂2j)2}1/2{Eα2
j1{|α̂j | ≥ bn}|}1/2

≤M
(p−m)maxj∈Ac |αj |

ε
√

n2

exp{−n1n2(bn −maxj∈Ac |αj |)2/(4n)}√
n1n2n−1(bn −maxj∈Ac |αj |)

,

which converges to 0. Therefore,

I2,2
P−→ 0.(7.16)

Then, we consider I2,3. Since c1 ≤ n1/n2 ≤ c2 and E(ε̂21j − ε̂22j)
2 = 3n2

1+3n2
2−2n1n2

n2
1n2

2
≤
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3c2+3−2c1
c1n2

2
, by (7.14) we have for every ε > 0,

P (|I2,3| ≥ ε) ≤ ε−1E
∣∣ ∑

j∈Ac

(ε̂21j − ε̂22j)1{|α̂j | ≥ bn}
∣∣

≤ ε−1
∑

j∈Ac

{E(ε̂21j − ε̂22j)
2}1/2P (|α̂j | ≥ bn)1/2

≤ M

∑
j∈Ac P (|α̂j | ≥ bn)

n2ε
−→ 0,

where M is some generic constant. Thus, I2,3
P−→ 0. Combination of this with (7.15)

and (7.16) entails

I2 = oP (1).

We now deal with I1. Decompose I1 similarly as

I1 =
∑

j∈A
(µ1j − µ̂1j)α̂j1{|α̂j | ≥ bn}+

1
2

∑

j∈A
α̂2

j1{|α̂j | ≥ bn}

≥
∑

j∈A
(µ1j − µ̂1j)α̂j1{|α̂j | ≥ bn}+

1
2

∑

j∈A
(α̂2

j − b2
n)

≡ I1,1 +
1
2
I1,2.

We first study I1,2. By using α̂j ∼ N(αj ,
n

n1n2
), it can be shown that

( 4n

n1n2

∑

j∈A
α2

j +
2mn2

n2
1n

2
2

)−1/2 ∑

j∈A
(α̂2

j − α2
j −

n

n1n2
) D−→ N(0, 1).(7.17)

Since n√
m

∑m
j=1 α2

j →∞, we have
(

4n
n1n2

∑
j∈A α2

j + 2mn2

n2
1n2

2

)1/2/∑
j∈A α2

j → 0. Therefore,

I1,2 =
∑

j∈A
(α2

j − b2
n) +

nm

n1n2
+

( 4n

n1n2

∑

j∈A
α2

j +
2mn2

n2
1n

2
2

)1/2
Op(1)

= (1 + oP (1))
∑

j∈A
α2

j +
nm

n1n2
−mb2.

Next, we look at I1,1. For any ε > 0,

P (|I1,1| ≥ ε) ≤ 1
ε
E|I1,1| ≤ 1

ε

∑

j∈A
{E|µ1j − µ̂1j |2E|α̂j |2}1/2 =

1√
n1ε

∑

j∈A

√
α2

j + n/(n1n2).
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When n is large enough, the above probability can be bounded by

P (|I1,1| ≥ ε) ≤
√

2/(n1ε2)
∑

j∈A
|αj |,

which along with the assumption
∑

j∈A |αj |
/
[
√

n
∑

j∈A α2
j ] → 0 gives

I1,1 = oP (1)
∑

j∈A
α2

j .

It follows that the numerator is bounded from below by

(1 + oP (1))
1
2

∑

j∈A
α2

j +
mn

2n1n2
− 1

2
mb2.

(b) Now, we study the denominator of Ψ. Let

∑

j

α̂2
j1{|α̂j | ≥ bn} =

∑

j∈A
α̂2

j1{|α̂j | ≥ bn}+
∑

j∈Ac

α̂2
j1{|α̂j | ≥ bn} ≡ J1 + J2.

We first show that J2
P−→ 0. Note that Eα̂4

j = α4
j +6n(n1n2)−1α2

j +3n2(n1n2)−2. Thus,

P (|J2| ≥ ε) ≤ 1
ε
E|J2| =

∑

j∈Ac

Eα̂2
j1{|α̂j | ≥ bn}/ε ≤ 1

ε

∑

j∈Ac

{Eα̂4
jP (|α̂j | ≥ bn)}1/2

≤ 1
ε

∑

j∈Ac

{(α4
j + 6n(n1n2)−1α2

j + 3n2(n1n2)−2)P (|α̂j | ≥ bn)}1/2.

This together with (7.14) and the assumption that log(p−m)/[n(bn−maxj∈Ac |αj |)2] → 0

yields J2
P−→ 0 as n →∞, p →∞. Now we study term J1. By (7.17), we have

J1 ≤
∑

j∈A
α̂2

j = (1 + oP (1))
∑

j∈A
α2

j +
mn

n1n2
.

Hence the denominator is bounded from above by (1+oP (1))
∑

j∈A α2
j + mn

n1n2
. Therefore,

ΨH ≥ (1 + oP (1))
∑

j∈A α2
j + mn

n1n2
−mb2

2
√

(1 + oP (1))
∑

j∈A α2
j + mn

n1n2

.
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It follows that the classification error is bounded from above by

1− Φ
((1 + oP (1))

∑
j∈A α2

j + mn
n1n2

−mb2

2
√

(1 + oP (1))
∑

j∈A α2
j + mn

n1n2

)
.

This completes the proof. ¥
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