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ABSTRACT
Motivation: Microarray experiments are expected to contribute
significantly to the progress in cancer treatment by enabling
a precise and early diagnosis. They create a need for class
prediction tools, which can deal with a large number of
highly correlated input variables, perform feature selection and
provide class probability estimates that serve as a quantifica-
tion of the predictive uncertainty. A very promising solution is
to combine the two ensemble schemes bagging and boosting
to a novel algorithm called BagBoosting.
Results: When bagging is used as a module in boosting, the
resulting classifier consistently improves the predictive per-
formance and the probability estimates of both bagging and
boosting on real and simulated gene expression data. This
quasi-guaranteed improvement can be obtained by simply
making a bigger computing effort. The advantageous predict-
ive potential is also confirmed by comparing BagBoosting to
several established class prediction tools for microarray data.
Availability: Software for the modified boosting algorithms, for
benchmark studies and for the simulation of microarray data
are available as an R package under GNU public license at
http://stat.ethz.ch/∼dettling/bagboost.html
Contact: dettling@stat.math.ethz.ch

1 INTRODUCTION
A precise diagnosis of cancerous malignancies is diffi-
cult but often crucial for successful treatment. Given the
large-scale, high-throughput gene expression technology and
accurate statistical methods, biomolecular information could
become as, or even more, important for cancer diagnosis
than the traditional clinical factors. The challenge is that
microarray experiments generate large datasets with expres-
sion values for thousands of genes, but usually not more
than a few dozens of arrays. The situation with so many
more predictor variables than experiments raises new stat-
istical challenges and has leads us to a wealth of research.
The task of diagnosing cancer on the basis of microarray
data has been termed class prediction in the literature, and
encompasses methods ranging from modified versions of
traditional discriminant analysis, over penalized regression

approaches and classical non-parametric methods such as the
nearest neighbor rule (NNR) to modern tools of machine
learning (for an overview and references see Dudoit and
Fridlyand, 2003).

Boosting is a flexible class prediction tool from machine
learning with remarkable success in a wide variety of applic-
ations, especially in those with high-dimensional predictors.
It aims at producing an accurate committee classifier from
a sequential ensemble of base learners, which are fitted with
adaptively reweighted versions of the data. It is attractive to
use boosting for class prediction with microarray data due
to its natural ability to perform multivariate feature selec-
tion, and because it provides class probability estimates that
serve as a natural quantification of the predictive uncer-
tainty. This has first been tried by Ben-Dor et al. (2000)
and Dudoit et al. (2002) with moderate success: empirically,
boosting could at best keep up with much simpler methods
such as the NNR. Later, we suggested a boosting algorithm
that was tailored for microarray data, showing a more satis-
factory predictive performance (see Dettling and Bühlmann,
2003).

Here, we present a novel type of boosting algorithm and
show its promising potential to improve class prediction
with microarray data. Our algorithm is called BagBoost-
ing, because it uses bagging as a module in our tailored
boosting algorithm for microarray data. The idea is illus-
trated in Figure 1: in each boosting iteration, we do not
just rely on a single base learner, but instead aggreg-
ate the output from several base predictors generated from
bootstrap samples, each drawn with replacement from the
reweighted training data. The rationale for combining the
two ensemble schemes bagging and boosting is as follows.
Although the boosting committee has clearly lower bias
but slightly increased variance than the base learner, bag-
ging of (unstable) base learners leads to an ensemble with
lower variance but approximately non-altered bias. Hence
BagBoosting might combine the advantages of both meth-
ods and results in a prediction tool achieving both lower
bias and variance, i.e. lower mean squared error. Even
though we cannot present a strict mathematical justification
that applies for the microarray setting, simulation studies
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Fig. 1. The fundamental idea of BagBoosting.

clearly reflect these heuristically derived advantages. As a
consequence, we also expect BagBoosting to yield superior
class prediction results on real microarray data. An elabor-
ate empirical study confirms the improvement compared to
both bagging and boosting. Also with respect to established
classifiers including discriminant analysis, nearest neighbor
methods and modern tools such as support vector machines
and random forests, BagBoosting is competitive. Finally, we
show how the BagBoosting fit can be rewritten in terms of
an additive model. This serves to study the influence of single
genes on real world classification problems, and to analyze the
ability to recover the true model structure in simulated data.

2 METHODS

2.1 Class prediction with gene expression data
The main goal in class prediction with gene expression data is
a precise and early diagnosis of cancerous malignancies that
allows to tailor the patients’ treatment for maximal efficacy
and minimal toxicity. Given microarray experiments and
information about outcome of the disease from n former
patients, the task of class prediction amounts to learning the
relationship between the transcript levels and the outcome.
Then, presented with the gene expression profiles of new,
independent patients, we can establish a diagnosis of the
development of their disease and outcome. In mathematical
notion, we assume that we are given a learning sample L of
n training data pairs

L = {(x1, y1), . . . , (xn, yn)},

which are independent and identically distributed (iid)
realizations of a random vector (x, y). The feature vector
x ∈ R

p is the gene expression profile, which can be either
from cDNA microarrays or from Affymetrix oligonucleotide
chips, but we assume that it is accurately preprocessed and
normalized, such that it can be taken at face-value. In the
simplest form, the response variable y ∈ {0, 1} codes for a
dichotomous response1, e.g. tumor subtype or risk category.
For class prediction, we choose the approach of estimating

1Extensions to a polytomous response are discussed later in Section 2.3.

conditional class probabilities

p̂(x) = P̂L[y = 1 | x]

from the learning sample L, based on the gene expression
profile x. They are a natural quantification for the uncertainty
of class predictions and can in turn be used to predict class
labels. In the case of equal misclassification costs, a new
patient with gene expression profile xν is assigned to one of the
response classes via

ŷ(xν) =
{

0, if p̂(xν) < 1
2

1, if p̂(xν) ≥ 1
2 .

(1)

Estimating conditional probabilities and subsequent class
prediction is a thoroughly discussed problem in statistics,
but microarray data with thousands of predictor variables
and just dozens of samples are a new challenge that requires
adaption of known and development of novel methodology.
A promising tool performing multivariate variable selection,
providing probability estimates and having good predictive
potential in such high-dimensional problems are modified
boosting algorithms.

2.2 BagBoosting
Boosting, first proposed by Freund and Schapire (1996),
is a powerful ensemble method that consistently estimates
conditional class probabilities p̂(x) from a sequence of
base classifiers, which are fitted with iteratively reweighted
versions of the training data. The initial notion of boosting
was that in each iteration, the cases that were misclassified in
the previous round get their weights increased, whereas the
weights are decreased for cases that were correctly classified.
Rather than as a sequential data reweighting scheme, boosting
can more fruitfully be seen as a forward stagewise strategy for
function estimation. It works by iterative optimization of an
empirical risk function

R[L, p̂(x), L] = 1

n

n∑
i=1

L[yi , p̂(xi )]

from the learning set L via constrained functional gradient
descent, where p̂(xi ) denotes the current boosting probability
estimate for the i-th instance and L(·, ·) a statistically
motivated loss function. If we employ the binomial
log-likelihood

L[y, p̂(x)] = y · log[p̂(x)] + (1 − y) · log[1 − p̂(x)],

a continuous surrogate for the 0/1-misclassification loss and
a very established criterion for binary classification, it is
easy to show that the resulting algorithm, called LogitBoost
(Friedman et al., 2000), yields an approximation to half of the
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log-odds ratio. That is,

F̂M(x) =
M∑

m=1

αmfm(x) ≈ 1

2
log

[
p(x)

1 − p(x)

]
.

Hence, LogitBoost is a linear expansion in a set of base
learners fm on the logit scale, obtained by stagewise
optimization of the binomial log-likelihood. Estimated
conditional class probabilities are obtained from the simple
transformation

p̂(x) = 1

1 + exp[−2F̂M(x)] ,

and can be used for class prediction as in (1). Obviously,
the choice of the base learner fm is crucial for the final
boosting estimate F̂M . Originally, decision trees have mainly
been used as a base procedure. In the context of microar-
ray data, we observed that stumps, these are the simplest
decision trees with only one split and two terminal nodes,
yield the best empirical performance (Dettling and Bühlmann,
2003).

Now, we present a novel type of algorithm, which uses
Breiman’s (1996) bagging as a module in our tailored
boosting procedure for microarray data. This amounts to
a modification of boostings base learner: instead of rely-
ing on a single decision tree/stump, we aggregate multiple
versions of them, obtained from bootstrap samples that
are drawn with replacement from the reweighted training
data of the m-th boosting iteration (Fig. 1). This intuit-
ive idea has been assumed by different researchers, it was
briefly sketched by Bühlmann and Yu (2000), but neither
there are any publications containing a formal descrip-
tion of the algorithm nor there are any systematical ana-
lyses of its performance via empirical studies on real or
simulated data.

2.2.1 Algorithmic details Our BagBoosting algorithm for
class prediction with microarray data is the LogitBoost
algorithm using bagged stumps as base learner. It is defined
as follows:

Step 1: Initialization
Set the initial boosting estimate to F̂0(xi ) ≡ 0 and the initial
probabilities to p̂(xi ) ≡ 1

2 .

Step 2: Boosting iterations
For m ∈ {1, 2, . . . , M = 100} repeat:

(A) Compute the weights wi and the working
response zi for i = 1, . . . , n

wi ← p̂(xi ) · [1 − p̂(xi )],
zi ← yi − p̂(xi )

wi

.

(B) Bagging to obtain the base learner
For b ∈ {1, 2, . . . , B = 50} repeat:
(i) Construct a bootstrap sample B =

{(x∗
1, w∗

1 , z∗
1), . . . , (x∗

n, w∗
n, z∗

n)}by randomly draw-
ing n triples with replacement from the original
data triples {(x1, w1, z1), . . . , (xn, wn, zn)}.

(ii) Fit a regression stump g(b) by weighted least
squares on the bootstrap sample B

g(b)(·) = arg min
g(·)

n∑
i=1

w∗
i [z∗

i − g(x∗
i )]2.

Average these B stumps to obtain boostings base
learner

fm(xi ) ← 1

B

B∑
b=1

g(b)(xi ), for all i = 1, . . . , n.

(C) Updating the boosting estimate and the
probabilities

F̂m(xi ) ← F̂m−1(xi ) + 1

2
fm(xi ),

p̂(xi ) ← 1

1 + exp[−2F̂m(xi )]
.

The definition of weights wi and working response zi in the
Logit(Bag)Boost algorithm is such that the (bagged) base
learner is forced to focus on observations close to the decision
boundary, i.e. data points where the boosting classifier is in
doubt about class membership. The final number of boosting
iterations M regulates the complexity of the prediction model,
early stopping is a form of shrinkage. In the context of
microarray data, we recommend a default value of M = 100,
which is a reasonable compromise between computing time,
predictive accuracy and prevention of overfitting. This choice
was shown to be empirically superior to approaches where
M was estimated on the training data via cross-validation
(Dettling and Bühlmann, 2003). In contrast, the number of
bagging iterations B is not a tuning parameter: in theory,
the bagged estimator corresponds to the bootstrap expecta-
tion and would require infinitely many iterations. In practice,
we employ Monte Carlo methods for an approximation; our
choice of B = 50 has been recognized as sufficiently large
by Breiman (1996).

2.2.2 Some heuristics about BagBoosting If the underlying
base algorithm is a decision stump, this is a univariate
indicator function with one split point in a single variable xj

and constant values in the two terminal nodes, BagBoosting
yields a model that is additive in the predictor variables. This,
since in every boosting iteration an average of B univariate
functions is linearly added to the current fit. We can always
rearrange the summation and represent the BagBoosting
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estimate as an additive combination

F̂M(x) =
p∑

j=1

θjh(xj ), (2)

where h(·) are aggregated indicator functions typically
showing a much smoother behavior than stumps, see
Section 3.2.3 and Figure 4. The coefficient θj is determined by
when, how often and with what accuracy the j -th variable was
used during the bagging and boosting iterations; it reflects the
importance of gene j in the final BagBoosting committee.
One of BagBoostings strengths is that it performs multivariate
variable selection and adds complexity in a stagewise fashion:
some of the genes are never selected at all and have θj ≡ 0.
The boosting iterations, i.e. the incorporation of new terms
in (2) is always conditional on the current fit, such that we
select genes that provide supplementary information to the
previous ones, rather than picking genes that all re-explain
the same phenomenon as with univariate gene selection. The
relatively simple, additive model from (2) is focusing on the
main effects, but free of interaction terms. This does not mean
that we deny them in the ‘true’ model, but from an empirical
viewpoint (data not shown), probably due to the usually small
sample size n, it pays off to rely on this simpler auxiliary
model. As microarray studies get larger, more complicated
models may become appropriate. The biggest advantage of
BagBoosting is that we can obtain them, without alterations
on the generic algorithm itself, by just using larger decision
trees as the base algorithm.

It is well known that stumps are an unstable weak learner,
producing highly biased and variable estimates. Here, we
give some heuristical arguments as to why BagBoosting, an
additive expansion in the set of stumps, improves these poor
properties. Bühlmann and Yu (2003) showed that squared
error loss boosting with smoothing splines as base learner
leads to an ensemble that has strongly reduced bias, but
only slightly higher variance than the base learner. Although
the mathematical results cannot be directly transferred, the
pronounced bias reduction and the slight increase in the vari-
ability presumably hold as well when applying LogitBoost
with stumps to microarray data. Thus, there is a room to
improve boosting with a low variance base learner, which
however still needs to have weak learning capacity only,
i.e. a considerable amount of bias. Bagging, a smoothing
operation that reduces the variance of unstable prediction
tools by averaging out hard decisions as from indicator func-
tions, but without having much of an effect on their bias,
is predestined to be used as a base learner in boosting. The
rationale is that BagBoosting profits from the synergy of
baggings variance and boostings bias reduction and achieves
lower mean squared error, such that we can expect a bet-
ter predictive performance. These heuristics are supported
by our empirical work on real and simulated data shown
in Section 3.

2.2.3 Comparison to other modifications of Boosting
Here, we emphasize that BagBoosting differs from other
boosting bagging hybrids that have been proposed in the
literature. Friedman (2002), in his stochastic gradient boost,
draws a single, random subset of the data points for each
boosting iteration and fits a single decision tree learner. The
subsampling even increases the variability of the base learner,
but Friedman argues that it reduces the correlation among
the learners from different stages, which results in a variance
reduction of the final boosting committee. He demonstrates
superior empirical results on a few simulated regression and
(to a much lesser extent) classification problems. Another
procedure similar to BagBoosting is Breiman’s (2001a)
‘Iterated Bagging to Debias Regressions’. As the heading
suggests, it is a procedure primarily developed for the regres-
sion, but not in the classification context. It is closely related
to squared error loss boosting and works by stagewise fit-
ting of unbiasedly estimated residuals from the out-of-bag
samples in a bagged base learner. Besides our common goal
of simultaneously reducing bias and variance by combining
stagewise modeling with bagged learners, our procedures are
fundamentally different, since we are boosting small bagged
decision trees in a classification problem, without making use
of the out-of-bag samples. Finally, Friedman and Popescu
(2003) view ensemble learning from the perspective of high-
dimensional numerical quadrature. They reveal a connection
between sequential ensemble classification and quasi Monte
Carlo integration, and they empirically showed that hybrid
approaches yield computational advantages. None of their
hybrids exactly corresponds to our BagBoosting algorithm,
but their methodology could serve as a route for explaining
the success of BagBoosting.

2.3 Multiclass problems
Since there are usually no genes that accurately discriminate
more than two classes at once, we recommend to run multiple
binary comparisons in J -class microarray problems where
y ∈ {0, 1, . . . , J −1}. The simplest solution is the one-against-
all approach, which works by defining the response in the
j -th problem as y(j) = 1 if y = j , and y(j) = 0 else. Then,
we are running BagBoosting J -times on the modified data
L(j) = {(x1, y(j)

1 ), . . . , (xn, y(j)
n )}. The estimated conditional

class probabilities are normalized and can in turn be used for
maximum-likelihood classification via

p̂(j)(x) = P̂L(j) [y(j) = 1|x]∑J−1
k=0 P̂L(k) [y(k) = 1|x] .

ŷ(x) = argmax
j∈{0,...,J−1}

p̂(j)(x).

Dettling and Bühlmann (2003) have shown that this is
empirically superior to boosting algorithms where multiclass
problems are handled simultaneously. Depending on the
structure of the response classes, more complex schemes than
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one-against-all may be more accurate for splitting polytomous
into multiple binary problems.

2.4 Feature preselection
BagBoosting incorporates multivariate feature selection and
hence does not crucially depend on preliminary gene filtering
by univariate methods when compared with other class predic-
tion tools. When running our analyses for different numbers
(10, 25, 50, 75, 100, 200) of genes filtered by the Wilcoxon
test statistic, we observed that the error rates as well as the
ranking among the classifiers hardly changed. Moreover, the
predictive potential of BagBoosting was only slightly worse
without gene preselection, whereas many benchmark classifi-
ers deteriorated considerably. For a fair comparison and due to
space constraints, we just display the outcome with 200 genes
in Section 3. The complete information is available from the
webpage http://stat.ethz.ch/∼dettling/bagboost.html.

Numerous alternative methods for gene filtering do exist.
These include, e.g. the popular t-test statistic, the TNoM-
score of Ben-Dor et al. (2000) or a selection based on the
Gini-index that is used as the splitting criterion for the stumps.
However, we prefer the Wilcoxon statistic due to its theoretical
property of being close to optimal over a wide range of data-
generating distributions, and due to our empirical evidence
that Boosting performed worse with features preselected by
the t-test and the TNoM-score (see Dettling and Bühlmann,
2003).

2.5 Other classifiers
We compared BagBoosting to several competitors, using
the implementations that are accessible from the statistical
software bundle R (R Development Core Team, 2004). The
classifiers include (1) Boosting: 100 iterations of LogitBoost
with stumps, exactly as described by Dettling and Bühlmann
(2003). (2) Random Forests (Breiman, 2001b): a technique
based on an ensemble of bagged trees that use random fea-
ture selection at each node. We relied on the R function
randomForest() (Liaw and Wiener, 2002) and tuned
the number of candidate variables for each split, as well as
the minimum size of terminal nodes by searching the grid
{1, 2, . . . , 8} × {1, 2, . . . , 10} on the training data, as sug-
gested by Meyer et al. (2003). (3) Support vector machines
(Burges, 1998): a modern machine learning technique that fits
hyperplanes with maximum margins to appropriately trans-
formed data. We used the R implementation svm() (Meyer,
2001) that is based on the LIBSVM C++ library of Chang
and Lin (2001, http://www.csie.ntu.edu.tw/∼cjlin/libsvm),
and performed C-classification with RBF kernels. The para-
meter γ and the cost C were tuned by a grid search on
{2−10, 2−9, . . . , 25} × {2−5, 2−4, . . . , 210} by 10-fold cross-
validation on each training dataset, similar to Meyer et al.
(2003). (4) Nearest shrunken centroids (also known as
PAM; Tibshirani et al., 2002): this classifier is similar to

diagonal linear discriminant analysis (DLDA), but uses a
soft-thresholding scheme to obtain sparse prediction models.
We employed the R implementation of the original authors,
which we also used for the determination of the shrink-
age parameter by 10-fold cross-validation as suggested by
Tibshirani et al. (2002). As benchmark methods, we employ
(5) DLDA and (6) the 1-NNR relying on Euclidean distances.

3 RESULTS

3.1 Real data
We report the class prediction performance of BagBoosting
on six publicly available datasets. They are as follows:

Dataset Publication n p J Response

Leukemia Golub et al.
(1999)

72 3571 2 Subtypes of
leukemia

Colon Alon et al.
(1999)

62 2000 2 Tumor/normal
tissue

Prostate Singh et al.
(2002)

102 6033 2 Tumor/normal
tissue

Lymphoma Alizadeh et al.
(2000)

62 4026 3 Subtypes of
lymphoma

SRBCT Khan et al.
(2001)

63 2308 4 Different
tumor types

Brain A Pomeroy et al.
(2002)

42 5597 5 Different
tumor types

After preprocessing, all gene expression profiles were base 10
log-transformed and, in order to prevent single arrays from
dominating the analysis, standardized to zero mean and unit
variance. In the absence of genuine test sets for four of the six
datasets, we performed our benchmark study by repeated ran-
dom splitting into learning and test sets exactly as in Dudoit
et al. (2002). The data were partitioned into a balanced learn-
ing set L comprising two-thirds of the arrays, used for feature
preselection, tuning and fitting the classifiers. Then, the class
labels of the remaining one-third of the experiments were
predicted and the misclassification error was computed as the
fraction of predicted class labels that differed from the true
one. To reduce the variability, the splitting into learning and
test sets was repeated 50 times and the error estimates were
averaged. It is important to note that these results are hon-
est in the sense that all gene filtering, classifier tuning and
fitting operations were re-done on each of the 50 learning sets
to allow for reliable conclusions and to avoid overoptimistic
results with downward bias.

In Table 1, we report the misclassification rates of the classi-
fiers over the six datasets. Figure 2 shows a visual illustration
of these results, following the suggestions about the present-
ation of benchmark studies by Hothorn et al. (2003). The
left panels show boxplots, where the median is highlighted in

3587

http://stat.ethz.ch/ dettling/bagboost.html
http://www.csie.ntu.edu.tw/ cjlin/libsvm


M.Dettling

Table 1. Misclassification rates for seven classifiers on six microarray data-
sets based on 50 random partitions into learning sets (two-thirds of the data)
and test sets (one-third of the data)

Leukemia Colon Prostate Lymphoma SRBCT Brain
(%) (%) (%) (%) (%) (%)

BagBoost 4.08 16.10 7.53 1.62 1.24 23.86
Boosting 5.67 19.14 8.71 6.29 6.19 27.57
RanFor 1.92 14.86 9.00 1.24 3.71 33.71
SVM 1.83 15.05 7.88 1.62 2.00 28.29
PAM 3.75 11.90 16.53 5.33 2.10 25.29
DLDA 2.92 12.86 14.18 2.19 2.19 28.57
kNN 3.83 16.38 10.59 1.52 1.43 29.71

red. The right panels show density curves, where the vertical
red line corresponds to the mean error rate. The performance
of the classifiers varies across the different datasets, but in
summary, BagBoosting, support vector machines and random
forests seem to have an edge. The nearest shrunken centroid
classifier (PAM), as well as the simple benchmarks NNR and
DLDA do surprisingly well and can almost keep up except on
the prostate data, notably the largest dataset in the analysis.
This may point out that the success of such methodologically
simple tools is limited to gene expression datasets with small
sample size. BagBoosting achieves the lowest error rates on
the prostate, SRBCT and brain data. It consistently improves
upon plain boosting on all six datasets, which already legitim-
izes the additional computing effort by using bagged stumps
as a learner in boosting.

3.2 Simulation studies
Our motivation to run simulation studies is 3-fold. First, due
to the scarcity of samples in real datasets, it is hard to detect
relevant differences and to assess the clinical relevance for the
classifiers. We will thus run a benchmark study on independent
realizations of large gene expression datasets. Second, due to
the lack of knowledge about the data generating process and
the underlying probability distribution on real datasets, we
cannot draw any inference about BagBoostings heuristically
claimed improvement of bias and variance, i.e. mean squared
error. Third, since we know the true response model on the
simulated data, we can check how accurately BagBoosting
recovers it from data, which is important to get an idea of how
well the BagBoosting model can be trusted in real datasets
to draw biological conclusions. All these tasks critically hinge
on a realistic simulation model for gene expression data as
follows:

Step 1: Estimating correlation and means
from real data
Use a real gene expression dataset of choice for estimating the
(p × p)-covariance matrix �, as well as the p-dimensional
mean vectors µ(k) = (µ

(k)
1 , . . . , µ(k)

p ) from the samples of
class k ∈ {0, 1}.

Step 2: Generating new gene expression
profiles

For an arbitrary sample size n of choice repeat
independently:

(i) generate a random vector by the p-dimensional multivari-
ate standard normal distribution,

z ∼ Np(0, 1p×p).

(ii) Transform z into a gene expression profile via

x = Bz + µ̂(k),

where B is a square root of the covariance matrix �,
determined by singular value decomposition.

Step 3: Response model
Determine conditional probabilities and class labels by one
of three response models of different complexity.

(a) Additive model with 10 genes
Use a set of 10 genes, assume w.l.o.g. that these are the
first 10 genes. Then,

F(x) =
10∑

j=1

xj .

(b) Weighted additive combination of 25
genes
Use a set of 25 genes, assume w.l.o.g. that these are the
first 25 genes. Fix a set of coefficients βj , e.g. randomly
drawn from a uniform distribution on [1, 3.5]. Then,

F(x) =
25∑

j=1

βjxj .

(c) Complex interaction model with 25
genes
Use a set of 25 genes, assume w.l.o.g that these are the
first 25 genes. Fix three sets of coefficients βj , γj and δj ,
e.g. each is randomly drawn from a uniform distribution
on [0, 2], [0, 2

10 ] and [0, 1
10 ], respectively. Then,

F(x) =
25∑

j=1

βjxj ·

1 +

25∑
j=1

γjxj


 ·


1 +

25∑
j=1

δj xj


 .

We regard F(x) as the log-odds ratio, which can be con-
verted into a conditional class probability p(x). Finally, the
class label y(x) is randomly generated from a Bernoulli
experiment, i.e.

p(x) = 1

1 + exp[−F(x)] ,

y(x) ∼ Bernoulli [p(x)].
Note that the choice of genes and coefficients happens by a
random mechanism, but is fixed for all samples in a simulation
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Fig. 2. Boxplots and density curves of the misclassification rates for seven classifiers on six microarray datasets based on 50 random splits
into learning and test sets. The vertical red lines highlight the median (boxplots) and the mean value (density curves).

run. Using this recipe, we can generate an arbitrary number
of iid gene expression profiles that follow the covariance and
differential expression properties of a microarray dataset of
choice. For our empirical work, we considered the structure of
leukemia, colon and prostate data. Owing to space constraints
and since the conclusions drawn from different structures
were very similar, we display here the results for leukemia data
only (for complete information refer to our Supplementary
Webpage http://stat.ethz.ch/∼dettling/bagboost.html). The
response models yield decision boundaries of various com-
plexity and result in a Bayes error (theoretical misclassif-
ication risk) between 5 and 10%. As this is even more than
the estimated generalization error on many real gene expres-
sion datasets, we conjecture that our response models are
sufficiently complicated and realistic.

3.2.1 Classification results For a discussion on the pre-
dictive potential, and for testing the null hypothesis of equal
performance, we run a benchmark study on simulated gene
expression data with several classifiers. In each simulation
experiment, we generated a learning set of 200 arrays and

a large test set with 1000 observations, both with balanced
class distributions. Exactly as on the real data, the preselec-
tion of 200 genes, as well as tuning and fitting of the classifiers
was performed on the learning data, before the misclassi-
fication risk was estimated by the fraction of predicted test
set class labels differing from the true one. This simulation
experiment was independently repeated 100 times. The error
rates are illustrated in Figure 3, where again the vertical red
lines correspond to the median and mean value in the box-
plots and density curves, respectively. The iid property of
the error estimates also allows to formally test the null hypo-
thesis that classifiers perform equally. We focus on pairwise
comparisons of BagBoosting against its competitors. Table 2
reports the error rates for each classifier, averaged over the
100 simulation runs, as well as the number of runs where it
was less accurate than BagBoosting. In a third column, we
report the p-value of the two-sided sign test for the null hypo-
thesis. In our simulation study with correlation and differential
expression structure from the leukemia dataset, the relation-
ship among the classifiers does not vary much over the three
response models. Support vector machines is clearly the best

3589

http://stat.ethz.ch/ dettling/bagboost.html


M.Dettling

Fig. 3. Misclassification rates for outsample classification on simulated gene expression data with various classifiers and three different
response models. The left panels show boxplots where the median is highlighted in red, the right panels show density curves where the red
vertical line corresponds to the mean error rate.

classifier, showing a highly significant advantage in the error
rates. BagBoosting is the second best and yields significantly
better predictions than the remaining competitors: the hardest
challenger is random forests, but even when using response
model (c) with interactions of third-order, BagBoosting has
an edge. This is quite surprising, since random forests are
built from mid-sized trees that encompass such interaction
terms, whereas BagBoosting with stumps only fits a main
effect model. Although boosting shows a much better per-
formance on simulated data when compared with real data,
it remains clearly behind BagBoosting. The lag is strongly
significant and increases with the complexity of the response
model. The difference between these top four methods and
the benchmarks PAM/DLDA/NNR is much bigger than that
of the real data, yielding further evidence that the success
of benchmarks is limited to small datasets.

3.2.2 Improvement of bias and variance The knowledge
about the probability distribution P [y = 1|x] in simulation
experiments allows to check whether BagBoosting has the
heuristically claimed property to lower bias and variance in
comparison with single, bagged and boosted stumps. There is
no bias-variance decomposition of the 0/1-misclassification
error, we are thus running such an analysis on the basis of
the predicted conditional class probabilities p̂(x). Since we
are not focusing on a particular input value x, but want to
learn about the precision of an estimated probability structure
over the whole input space X , the measure of interest is the

integrated mean squared error (IMSE)

IMSE(p̂) =
∫

X
Var(p̂(x)) + E[p̂(x) − p(x)]2dF(x),

where F is the probability distribution on the input space.
The IMSE is decomposed into variance and bias and can be
estimated via approximating the outer integral by randomly
drawing a sufficiently large number of input values xi from F .
Variance and expectation are approximated by averaging over
a sufficiently large number of simulations: an estimation of
integrated variance and integrated squared bias of a probability
function are given by:

Var(p̂) = 1

T

T∑
i=1

[
1

S

S∑
k=1

[p̂k(xi ) − p̄(xi )]2

]
,

Bias(p̂)2 = 1

T

T∑
i=1

[
1

S

S∑
k=1

p̂k(xi ) − pk(xi )

]2

,

where p̂k(xi ) and pk(xi ) denote the estimated and true prob-
abilities in the k-th simulation run, and where p̄(xi ) =∑S

k=1 p̂k(xi ). For checking the bias-variance properties of
BagBoosting versus single stumps, bagged stumps and
boosted stumps, we performed S = 100 simulation runs
and generated learning sets of 200 observations each. Gene
preselection and fitting the four predictors was re-done on
each learning set, before out-of-sample probability estimates
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Table 2. Misclassification rates for outsample classification on 100 iid simulation experiments with various classifiers and three different response models, as
well as the number of simulations where each of the classifiers was worse than BagBoosting, and the P -value for the two-sided sign test that the performance
is equal

Response (a) Response (b) Response (c)
Error (%) Worse P -value Error (%) Worse P -value Error (%) Worse P -value

BagBoost 17.02 — — 17.57 — — 13.19 — —
Boosting 18.32 89 0.0000 19.09 96 0.0000 14.42 97 0.0000
RanFor 18.87 93 0.0000 19.19 87 0.0000 14.00 68 0.0004
SVM 16.33 36 0.0066 16.94 31 0.0002 11.13 7 0.0000
PAM 20.99 100 0.0000 22.25 99 0.0000 18.61 96 0.0000
DLDA 20.83 99 0.0000 21.15 98 0.0000 17.18 91 0.0000
kNN 24.04 100 0.0000 25.67 100 0.0000 18.90 100 0.0000

Table 3. Estimates of IMSE, variance and squared bias for conditional class probabilities, obtained from four different prediction methods on simulated gene
expression data with three different response models

Response (a) Response (b) Response (c)
IMSE Var Bias2 IMSE Var Bias2 IMSE Vari Bias2

Stumps 0.102 0.041 0.061 0.116 0.040 0.075 0.128 0.037 0.091
Bagging 0.069 0.010 0.059 0.083 0.010 0.073 0.096 0.008 0.088
Boosting 0.076 0.048 0.028 0.086 0.056 0.030 0.090 0.047 0.043
BagBoost 0.045 0.020 0.026 0.050 0.023 0.027 0.056 0.019 0.037

p̂(xi ) for T = 1000 fixed test points were computed. The
results are summarized in Table 3.

All our heuristical claims are confirmed by the simulation
results that are consistent over the three response models. In
terms of IMSE, BagBoosting is best, ranking before the about
equally good bagging and boosting, whereas single stumps are
clearly worse. This means that BagBoosting not only yields
the best 0/1-classification, but also the most precise estim-
ates of the conditional class probabilities. As expected from
theory, bagged stumps have considerably lower variance but
similar bias as single stumps. On the other hand, boosted
stumps have slightly higher variance than single stumps, but
they compensate by a much bigger gain in bias. Finally, as
heuristically derived, BagBoosting has both lower bias and
variance than stumps. The use of a bagged stump as base
learner in boosting clearly pays off: while the variance is
∼60% less than for plain boosting, the bias does not increase
and is even ∼10% lower. Hence, we conjecture that Bag-
Boosting really exploits the synergy of bagging and boosting;
the mechanisms for improving bias and variance work in the
microarray setting. These results confirm our previous evid-
ence that BagBoosting improves upon bagging or boosting,
and that it is worth the additional computing effort.

3.2.3 Model recovery The purpose of this section is to
check how well BagBoosting recovers the true response model
in such a difficult setting as microarray data with thousands

of highly correlated predictor variables. The inference is based
on a single (but representative) learning set L from our simula-
tion model with response type (a) and correlation/differential
expression structure of the leukemia data. As a slight modifi-
cation, we standardized all genes to unit variance to facilitate
the inference. Then, we select the 200 most discriminative
genes according to the Wilcoxon statistic, run BagBoosting
and rewrite the fit in its componentwise additive representa-
tion from Equation (2). For each variable xj , the smoothed
step functions, obtained by combining numerous stumps, are
centered to zero mean and scaled to unit variance across
the 200 fitted values; this yields the univariate functions
h(xj ). The scaling factor is then defined as the coefficient
θ̂j . It reflects the importance of the j -th variable in the final
BagBoosting estimate.

Figure 4 shows the true function values xj (black dots on
the diagonal), along with the smoothed step functions and
their fitted values (gray circles) from the final BagBoosting
estimate. Displayed are the three most important predictor
variables, i.e. the genes with the biggest coefficients θ̂j . Note
that the estimated functions h(xj ) are accurately centered,
but their shape is smooth and linear in just a restricted interval
around zero. This is not too surprising, since Logit(Bag)Boost
mainly focuses on accurate estimation in a region around
the decision boundary, and data points that are classified
with higher confidence are regarded as less interesting. This
argument is supported by the fact that a log-odds ratio of
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Fig. 4. BagBoosting model fit and true predictors: the black dots represent the linear univariate functions for three genes in the simu-
lation model. Superimposed are the smoothed univariate step functions and their fitted values (grey circles), obtained by BagBoosting
with stumps.

Table 4. Comparison of the 10 true and the 10 most important BagBoosting
genes: given are their estimated model coefficients θ̂j , the ranking R(θ̂j ) of
the coefficients according to their magnitude and the maximal correlation of
each gene to 1 of the 10 genes from the other group

Important genes True genes
Gene R(θ̂j ) θ̂j Correlation Gene R(θ̂j ) θ̂j Correlation

1 1 0.859 1.000 1 1 0.859 1.000
2 2 0.450 1.000 2 2 0.450 1.000
44 3 0.226 0.494 3 19 0.129 0.810
582 4 0.220 0.646 4 61 0.047 0.752
1026 5 0.217 0.623 5 66 0.041 0.864
1072 6 0.212 0.482 6 74 0.033 0.846
520 7 0.204 0.710 7 88 0.026 0.832
930 8 0.197 0.582 8 137 0.012 0.779
1894 9 0.188 0.661 9 149 0.009 0.655
261 10 0.183 0.859 10 155 0.008 0.694

F(x) = 1, where the step functions level out, corresponds
to an estimated probability of p(x) = 0.88.

Table 4 reports the estimated model coefficients θ̂j for the
10 true genes from the simulation model, as well as for the 10
most important features in the BagBoosting fit. The import-
ance ranking R(θ̂j ) is determined by the magnitude of θ̂j .
We observe a small overlap of only two genes between the
true and the most important variables. Moreover, many of the
true genes have low importance θ̂j , far from the theoretical
value θj = 1. On the other hand, the 10 most important genes
have limited influence, too. BagBoosting spreads the respons-
ibility on the shoulders of a larger gene set: 6 out of 200
available genes were not selected at all, 141 have a negligible
influence with θ̂j < 0.05, whereas the remaining 53 genes
form the core for class prediction. The discrepancy between
the true and the fitted model may seem disappointing, but
is explained as follows. Although only 10 genes determine
the hidden target function F(x) and the exact course of the

decision boundary, many more are closely associated with the
class labels y on the learning set that BagBoosting is presented
with, due to the high correlation and the (often strong) differ-
ential expression for the genes. This is confirmed with our
empirical analysis in Table 4, where we showed the max-
imal correlation of each gene from the true and the important
feature set to a member of the other group. These correlations
are >0.5 throughout and indicate that the true genes are sub-
stituted by very similarly regulated genes. The discrepancy
between the true and the fitted model is a flaw and not only
BagBoosting suffers from this flaw. When analyzing the fitted
models of the competing classifiers (where possible, data not
shown), we observe a similar situation, which is inherent to the
highly collinear gene expression data. This emphasizes that
the prediction models, despite their merits in cancer diagnosis,
must be treated with enormous care for drawing biological
conclusions.

4 CONCLUSIONS
The goal in class prediction with microarray data is a precise
classification of cancerous malignancies at an early stage,
allowing for directed and more successful therapies. Important
for this task are classification algorithms that can deal with the
high dimensionality of gene expression data, and that exploit
as much of the available information as possible. We propose a
hybrid approach of ensemble methods, where bagged stumps
are employed as the base learner in boosting. For both real and
simulated gene expression data, we showed that BagBoosting
consistently lowers the misclassification error of plain boost-
ing and bagging, and that it is competitive in comparison with
modern prediction tools such as random forests and support
vector machines. On simulated data, we furthermore provide
sound empirical evidence that BagBoosting results in more
precise conditional class probability estimates by reducing
both the bias and variance of the base algorithm.
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It has been recognized by several researchers that the
introduction of randomness into ensemble schemes can
improve their predictive potential. Owing to the Monte Carlo
approximation of the bootstrap expectation, BagBoosting is
a non-deterministic rule, too. However, we do not think that
this is the principal explanation for its success, which is rather
caused by a variance reduction achieved by averaging over a
set of stumps, a very crude and unstable learner for microarray
data. In simulation studies, this variance reduction is shown to
propagate within the boosting algorithm, which however still
lowers the bias as desired. BagBoosting thus really combines
the advantages of the two ensemble methods it is built from.

Critical voices are often concerned that the time-consuming
effort of fitting very complex prediction tools, such as
(Bag)Boosting, random forests and so on, is not legitimated
by the small empirical improvement over much simpler meth-
ods on microarray data. Although at present, the advantage
of BagBoosting versus the NNR or DLDA on gene expression
data with limited number of samples is not very big in terms of
the 0/1-misclassification error. Whereas the difference grows
to significant size on larger microarray problems and becomes
very pronounced on simulated datasets with more than 1000
expression profiles. While already a small improvement today
can save an additional patients life, sophisticated class predic-
tion tools such as BagBoosting are expected to display their
full benefit only in future studies with larger sample size.
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