
36-402/608 Homework #6 Solutions 2/25

1. Global warming (50 points)

This problem uses the global warming data of Sleuth Chapter 15, case 2 from
case1502.csv. See page 438 for a description.

(a) Read in the data, and fit a simple regression model of temperature on year.
Turn in the regression summary, and explain why the p-value for year might
be incorrect.

In the presence of serial correlation, ordinary regression incorrectly estimates
the standard errors. Because the p-value is for a t statistic that has the standard
error in its denominator, the p-value is incorrect.

temp = read.csv("case1502.csv")

names(temp) = casefold(names(temp)) # optional (lower case names)

temp$year1880 = temp$year - 1880 # optional (centering)

t0 = lm(temp ~ year1880, temp)

par(mfrow=c(3,1))

plot(temp$temp, , xlab="year", ylab="Temperature")

acf(t0$resid, main="Temperature Residuals from Linear Fit")

pacf(t0$resid, main="Temperature Residuals from Linear Fit")

(b) Turn in a three-panel plot with panels for temperature vs. year, the ACF of
the residuals, and the PACF of the residuals. For this and subsequent parts,
be sure to override the main=, xlab=, and ylab= arguments to produce a plot
suitable for showing your boss. For example, nothing of the form “dtf$var”
should show on the plots.
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(c) Fit three arima() models which include a linear trend in time and use the
time series models: ARMA(1,0), ARMA(2,0), and ARMA(0,1). Show your
code and the three AIC values, and state which model is best according to the
AIC criterion.

t1 = arima(temp$temp, order=c(1,0,0), xreg=cbind(yr=temp$year1880))

t2 = arima(temp$temp, order=c(2,0,0), xreg=cbind(yr=temp$year1880))

t3 = arima(temp$temp, order=c(0,0,1), xreg=cbind(yr=temp$year1880))

cat("AIC ARMA(1,0), ARMA(2,0), ARMA(0,1) =", t1$aic, t2$aic, t3$aic, "\n")

# AIC ARMA(1,0), ARMA(2,0), ARMA(0,1) = -182.1309 -181.1131 -180.6442

ARIMA(1,0,0)=ARMA(1,0)=AR(1) is (just barely) the best, because it has
the lowest AIC.

(d) Using the best model from part c, turn in a plot with panels for the ACF of
the residuals, the PACF of the residuals, and the cumulative periodogram of
the residuals (don’t worry if the relative size of this plot looks funny). Place
an appropriate “outer” title over the three sub-plots.

par(mfrow=c(3,1), oma=c(0,0,2,0))

acf(t1$resid, main="")

pacf(t1$resid, main="")

cpgram(t1$resid, main="Cumulative Periodogram")

mtext("Temperature Residuals from Linear Fit with AR(1)", outer=T, cex=1.4)

dev.copy(pdf, "HW6p1AR1.pdf"); dev.off()
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(e) As an aid to learning about complex R objects, turn in the result of applying
names() to your best arima() model object of part c. Also turn in the result
of myArimaObject$coef and myArimaObject$var.coef where “myArimaOb-
ject” is whatever you called the model object. You may want to explore some
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other components of the object, as well as examining the “Value” portion of
?arima to see what is available by using the “$” operator on an “arima” object.
Note that not all of these are useful.

names(t1)

# [1] "coef" "sigma2" "var.coef" "mask" "loglik" "aic" "arma"

# [8] "residuals" "call" "series" "code" "n.cond" "model"

t1$coef

# ar1 intercept yr

# 0.460706737 -0.340714940 0.004562007

t1$var.coef

# ar1 intercept yr

# ar1 7.399101e-03 -5.617448e-05 2.041972e-06

# intercept -5.617448e-05 1.213885e-03 -1.680391e-05

# yr 2.041972e-06 -1.680391e-05 3.235554e-07

(f) As an aid to learning about complex R objects, turn in the results of these two
commands, substituting your arima object for “myArimaObject”.

class(t1)

# [1] Arima

methods(class="Arima")

# [1] coef.Arima* logLik.Arima* predict.Arima* print.Arima* tsdiag.Arima*

Now you know that you can use, e.g., coef(myArimaObject), and vcov(myArimaObject)

as an alternate way to get the coefficients and variance covariance matrix. You
can also use tsdiag(myArimaObject) and predict(myArimaObject) to do
things not available with the “$” operator. Also note that the message “Non-
visible functions are asterisked” indicates which method functions cannot be
directly examined, even though they can be run and you can get help on some
of them with “?”.

(g) Turn in the plot that results from running tsdiag() on your best “arima”
object of part c. Include an appropriate outer title. Note that finding all of
the p-values > 0.05 in the Ljung-Box plot is a good indicator that you have
removed all serial correlation.
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Standardized Residuals
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(h) Turn in the code to calculate the t-value and p-value and your statistical con-
clusion for a test of no change in temperature over time vs. a change over time
using code rather than directly entering numbers for the t ratio.

tval = coef(t1)[3] / sqrt(vcov(t1)[3,3])

# yr

# 8.020135

#

df = length(t1$residuals)-2

2 * pt(-abs(tval), df)

# 1.503510e-12

With the serial-correlation-adjusted p << 0.05, I reject the null hypothesis
that the temperature is constant over time.

(i) Turn in the t-value from directly entering the numbers that appear in the
printout of the arima object. Explain why it is different from the result of part
h.

0.0046/0.0006 # 7.666667

This is just rounding error; we are seeing the SE with only one significant
figure.
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(j) Explain what you might do to check if the temperature pattern over the 108
years is curved rather than linear.

Add year2 to the model and check if its coefficient is statistically significant.

2. Appliance Sales (50 points)

(a) Load the appliance data from “appliances.dat” into a variable called “app”,
throwing away or ignoring columns 6 and 7. Turn in an EDA plot of the
US sales (which are in thousands of appliances) over the available years for
dishwashers, garbage disposals, refrigerators, and washing machines. Be sure
to include 0 on the y-axis and to use different line types (lty=) so that the
appliances can be distinguished in a black and white printout.

app = read.table("appliances.dat",T)[,1:5]

names(app) = casefold(names(app))

# Optional: make data into time series

for (i in 2:ncol(app)) app[,i] = ts(app[,i], start=1978, deltat=0.25)

plot(app$dish, ylim=c(0,max(app[,2:5])), ylab="Thousands Sold", xlab="Year")

for (i in 2:4) lines(app[,i+1], col=i, lty=i)

legend("bottomleft", c("dishwasher","disposal","refrigerator",

"washing machine"), col=1:5, lty=1:5)
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(b) Which appliance most clearly requires advanced techniques due to a seasonal
(yearly repeating) pattern?

Refrigerator sales show a peak and a valley for each year.

(c) We will examine dishwashers and disposals only. Will a linear trend be ade-
quate?

No, they both look curved.

(d) Create columns in the data.frame for a centered version of year (i.e., year minus
the mean of year), and the square of that column. Turn in the mean of the
square column.

The mean of the squares of centered year is 85.25.

app$cqtr = app$qtr - mean(app$qtr)

app$cqtr2 = app$cqtr^2

mean(app$cqtr2)

(e) Run an ordinary linear regression for each of the two appliances over time
including the square of time. Under what circumstances would the standard
error and p-value reported by lm() be correct vs. incorrect?

d0 = lm(app$dish ~ app$cqtr + app$cqtr2)

s0 = lm(app$disp ~ app$cqtr + app$cqtr2)

The SEs and p-values are correct only if the errors are uncorrelated (and the
relationship is linear, and the errors are normal and of constant variance and
Normally distributed, and year is measured precisely (i.e., fixed x)).

(f) Turn in the ACF, PACF and cumulative periodogram for the residuals of the
dishwasher model of part e.
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(g) State your best guesses of the appropriate ARMA models for dishwashers and
disposals.

Both sets of plots are similar and suggest AR1 (because there is a sinusoidal
pattern in the ACF and a single large peak in the PACF).

(h) Fit the models of part g using arima() with xreg=cbind() binding together
the centered year variable and its square. Turn in the $coef components of
these arima models for both outcomes.

d1 = arima(app$dish, order=c(1,0,0), xreg=cbind(app$cqtr,app$cqtr2))

d1$coef

# ar1 intercept

# 0.7346021 673.3917841

# cbind(app$cqtr, app$cqtr2)1 cbind(app$cqtr, app$cqtr2)2

# 0.6431687 1.0644347

s1 = arima(app$disp, order=c(1,0,0), xreg=cbind(app$cqtr,app$cqtr2))

s1$coef

# ar1 intercept

# 0.5204349 792.8723793

# cbind(app$cqtr, app$cqtr2)1 cbind(app$cqtr, app$cqtr2)2

# 7.9032703 0.6987913

(i) Examine the ACF, PACF, and the cumulative periodogram of the arima resid-
uals from part h for both outcomes, and turn in your conclusions.
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The AR1 model appropriately removed the serial correlation from the residuals,
leaving white noise.

(j) Turn in the p-value for the test of a curved time course (vs. the null hypothesis
of just a linear change over time) for dishwashers, along with your statistical
conclusion.

td1 = coef(d1)[4] / sqrt(vcov(d1)[4,4])

td1 # 2.587041

2*pt(-abs(td1), nrow(app)-4)

# 0.0152

With p ≤ 0.05 I reject the null hypothesis of no quadratic component to the
curve, and conclude that a linear pattern is insufficient.

The correct df for the t-test is n− p where n is the number of subjects, and p
is the number of estimated parameters.
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