36-402/608 Homework #3 Solutions 2/5

. Blood Brain Barrier (50 points)

We will examine the blood-brain barrier experiment of Sleuth, chapter 11, pp. 307-
310, using the data in case1102.csv. Start by running these R commands:

bb = read.csv("casel102.csv")
dim(bb)
sapply(bb, class)

# Simplify future typeing by changing names to lower case:
names (bb) = casefold(names(bb))
names (bb)

# Make new variables
bb$logBLratio = log(bb$brain/bb$liver)
bb$logTime = log(bb$time)

(a) (b points) Using with() and table() and prop.table() turn in R commands
and output to show 1) whether the number of males and females is equal for
the two treatments, and 2) whether the proportion of “days post inoculation”
was similar for the two treatments. Check the help text for prop.table() if you
are unfamiliar with this function.

with(bb, table(treat,sex))

# sex

#treat F M

# BD 13 4

# NS 13 4

prop.table(with(bb, table(treat,days)), 1)
# days

#treat 9 10 11

# BD 0.05882353 0.82352941 0.11764706
# NS 0.11764706 0.76470588 0.11764706

(b) (5 points) Make and turn in a plot of the outcome (logBLratio) vs. the log
sacrifice time (logTime) as in Display 11.5 but showing only the log scale. Use
meaningful text rather than variable names for the axis labels. Use the plot
option pch=as.numeric(treat) to make different symbols for the two treat-
ments. Use with(bb, table(treat,as.numeric(treat))) to figure out the
correct text to fill into the quotes for making a legend with legend ("topleft",
legend=c("",""), pch=1:2). Turn in the code and plot.



# Plot key variables

with(bb, plot(logBLratio ~ logTime, pch=as.numeric(bb$treat)))
levels(bb$treat)

# [1] "BD" "NS"

with(bb, table(treat,as.numeric(treat)))

#treat 1 2

# BD 17 O

# NS 0 17

legend("topleft", legend=c("Barrier Disruption","Saline Control"), pch=1:2)
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(5 points) Perform a regression to answer the question “Did the treatment
cause a change in the outcome, correcting for the log of the sacrifice time?”.
For this part assume that the change is by a constant amount at each sacrifice
time. Call your 1m() result “m0” to match everyone to the same names. Turn
in your R code and the coefficient table from the summary.

m0 = 1m(logBLratio ~ logTime + treat, bb)

summary (m0)

#Coefficients:

# Estimate Std. Error t value Pr(>|t|)
#(Intercept) -3.00928 0.18400 -16.355 < 2e-16 *xx
#logTime 1.09784 0.05654 19.416 < 2e-16 *xx
#treatNS -0.84579 0.21640 -3.908 0.000471 *x*x

(5 points) Repeat the previous question, but now allowing a differential effect
of treatment on the outcome that depends on the (log of the) sacrifice time.
Call your 1m() result “m1”. Turn in your R code and the coefficient table from
the summary.



ml = Im(logBLratio ~ logTimextreat, bb)

summary (m1)

#Coefficients:

# Estimate Std. Error t value Pr(>|tl)
#(Intercept) -2.98457 0.21145 -14.11 8.74e-15 **x
#logTime 1.08417 0.07933 13.67 2.02e-14 *x*x*
#treatNS -0.89928 0.30693 -2.93 0.00642 x*x*

#logTime:treatNS 0.02870 0.11497 0.25 0.80458

(5 points) Use rp() from http://www.stat.cmu.edu/~hseltman/402/R /rp.R
(an improved version of what we saw in class) to make the residual vs. fit plots
for both models. Turn in a few sentences describing any potential problems
revealed by these plots.

source("http://www.stat.cmu.edu/ "hseltman/402/R/rp.R")
rp(m0, identify=TRUE)
rp(ml, identify=TRUE)

m0 ml
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There is clear evidence of a negative residual outlier on rat 34 near that has
a high predicted (fitted) value for the logBLratio outcome. There is also clear
evidence of non-linearity (smile pattern). It is easy to over-read the indicators
of unequal error variability on a plot like this with a fairly small sample size;
I don’t think there is good evidence of violation of the constant error variance
assumption. You cannot see whether or not the Normal error distribution
assumption, the fixed-x assumption or the independent errors assumption is
violated on a residual vs. fit plot.

(5 points) Ignoring the potential problem(s), make a brief clear statement of
the interpretation of the interaction line of the coefficient table for part d.


http://www.stat.cmu.edu/~hseltman/402/R/rp.R

We do not have sufficient evidence to reject the null hypothesis that the effects
of treatment on logBLratio is constant across time. An equivalent statement
is that we do not have sufficient evidence to reject the null hypothesis that the
slopes of the logBLratio on logTime plots are parallel for the two treatments.
Just saying that we retain the null of “no interaction” would not be clear to
most researchers.

Extra comments: This leaves us with two possibilities: there is no interaction
or there is an interaction and we missed it (made a type two error). We can
split the latter into two possibilities: not enough power vs. good power couple
with bad luck (inevitable chance that, say, an outcome with 20% probability
will occur 20% of the time). One way to get part way around this limitation is
to use confidence intervals. The approximate 95% CI on the slope difference is
0.029 +/- 2(0.115) = [-0.201, 0.259]. Because logTime=0 and logTime=1 are
will in the range of logTime (-0.69 to 4.28), this can be interpreted as being
95% confident that the mean rise in outcome over that time interval is less than
4.28 more for treated than control rats, compared to the best guess of 1.08 for
the control rats. Subject matter experts are needed to judge the importance
of this, but it seems to me that this last statement describes a possible large
interaction effect, i.e., the power to detect interaction was insufficient.

(5 points) Turn in the summary () of the influence.measures() for the inter-
action model along with a brief interpretation.

summary (influence.measures(ml))
#Potentially influential observations of

# Im(formula = logBLratio ~ logTime * treat, data = bb)

#

# dfb.1_ dfb.1gTm dfb.trNS dfb.1T:N dffit cov.r cook.d hat
#34 0.00 0.00 0.14 -0.85 -1.49_x 0.33_%x 0.40 0.15

Because Cook’s D is not flagged for any data point, and there are no high
leverage points the outlier will likely not affect the results drastically. One
flagged effect is DFFITS=-1.49, which suggests that the fitted value of case 34
will change a lot if that case is dropped. We can see this effect (compared to
the minor effect of removing, say, case 33) as follows:

# predict(ml, newdata=bb[34,])

# 0.8755268

predict (update(ml,subset=-34) ,newdata= bb[34,])
# 1.194230

predict(ml, newdata=bb[33,])

# 0.8755268

predict(update(ml,subset=-33), newdata=bb[33,])
# 0.9102933



We also see that the confidence intervals change a lot when case 34 is dropped:

apply(confint(ml),1,diff)

# (Intercept) logTime treatNS logTime:treatNS
# 0.8636959 0.3240190 1.2536878 0.4695868
apply(confint (update(ml,subset=-34)),1,diff)

# (Intercept) logTime treatNS logTime:treatNS
# 0.7368614 0.2764365 1.0704263 0.4121385
apply(confint (update(ml,subset=-33)),1,diff)

# (Intercept) logTime treatNS logTime:treatNS
# 0.8781695 0.3294488 1.2757022 0.4911744

(5 points) Run the command m2 = update(ml, subset=rownames (bb)!=34)
to remove the potentially troublesome observation. Summarize what changes
to any substantial extent between models m1 and m2.

summary (m2)

#Coefficients:

# Estimate Std. Error t value Pr(>|t|)
#(Intercept) -2.98457 0.18014 -16.568 2.52e-16 *xx*
#logTime 1.08417 0.06758 16.043 5.86e-16 *xx*
#treatNS -0.93577 0.26169 -3.576 0.00125 *x

#logTime:treatNS 0.11175 0.10076 1.109 0.27649

#

#Residual standard error: 0.5456 on 29 degrees of freedom
#Multiple R-squared: 0.9482, Adjusted R-squared: 0.9428
#F-statistic: 176.8 on 3 and 29 DF, p-value: < 2.2e-16

There is no effect on the estimate of the intercept or slope for logTime, but
their estimated standard errors are smaller when the outlier is removed. The
estimated slope for treatNS (intercept difference for barrier treatment com-
pared to control) is larger in magnitude when the outlier is dropped and the
interaction coefficient is also larger. Both have smaller standard errors when
the outlier is dropped. (These smaller standard errors lead to larger (absolute
value) t-values and hence smaller p-values.) R-squared is also somewhat better
(bigger) when the outlier is dropped, and the residual standard error is smaller.

(5 points) Run the influencePlot () from package “car” on model “m1”. Turn
in brief comments on what we can learn from examining the plot.
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This plot matches the influence.measures() in that it shows one negative resid-
ual outlier that does not have undue leverage. Using a different cutoff values
for flagging Cook’s distance, this plot shows flags (in red) both rats 31 and
34 as potentially having a meaningful effect on the location of the “predicted
means surface” and the values of the estimated coefficients.

(j) (5 points) Explain what it would have indicated if we would have seen a large
negative value for the logTime component of DFBETAS (dfb.lgTm) in the
influence output for subject 34 in part g.

This would indicate that dropping subject 34 is unduly lowering the estimate
of the logTime slope coefficient (and dropping that point would result in a
higher estimate).

2. Boston Housing Data (50 points)

Here we will use a subset of the 1970 Boston housing data that explores the ability of
various explanatory variables to help predict median house value (medv in thousands
of dollars) at the level of “housing tract”. (A housing tract is typically smaller than
a “neighborhood”.) We will include average number of rooms per dwelling (rm),
property-tax rate per $10,000 (tax), and percent “lower status” of the tract (Istat).
Load our version of the data using:

bost = read.csv("bost.csv")

(a) (10 points) Explore the missing value pattern of the data. Turn in R code,
your results, and a brief summary of the missingness in complete sentences.

sapply(bost,function(x)mean(is.na(x)))
# rm tax lstat medv



#0.1326531 0.0000000 0.1265306 0.0000000
table(apply(bost,1,function(x)sum(is.na(x))))
# O 1 2

#373 107 10

pattern=apply(bost,1,function(x)paste(c("P","N") [1+is.na(x)],collapse=""))

table(pattern)

#NPNP NPPP PPNP PPPP

# 10 55 52 373
prop.table(table(pattern))

# NPNP NPPP PPNP PPPP
#0.02040816 0.11224490 0.10612245 0.76122449

There is missing data only from rooms and percent lower status, both around
13%. Around 3/4 of housing tracts have no missing data, and only 10 tracts
(2%) have both missing, while about 22% are missing just one or the other.

(10 points) Examine the data using pairs() and comment on all of your im-
portant preliminary conclusions and concerns about the data, particularly with
respect to consideration of use of multiple regression for making predictions.
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Rooms is directly correlated with value with a lot of low values at the low end
of rooms. Tax is negatively correlated with value with a lot of scatter but no
evidence of nonlinearity. Lower status percent is negatively associated with
value, but in a curved relationship.



()

(5 points) Run b0 = lm(medv ~ rm + tax + lstat, bost). Notice that
rp(b0), rp(b0,"rm"), and rp(b0,"lstat") all suggest non-linearity. Run
bl = lm(medv ~ rm + I(rm~2) + tax + log(lstat), bost). Now notice
that rp(b1), rp(bl,"rm"), and rp(bl,"log(lstat)") no longer show prob-
lems with linearity, but now there are outliers. Use the identify=TRUE option
of rp() to identify the two worst outliers. Turn in their row numbers in “bost”
as well as their row names (which is what is added to the plot using “identify”).

b0: No transformations b1: with rm”2 and log(Istat)
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The plot on the right shows that the row names of the worst outliers are
506 and 365. The return value of rp(b1, "rm", main="bl: with rm~2 and
log(lstat)", identify=TRUE) shows the row numbers are 279 and 373

(10 points) Use summary(influence.measures()) and influencePlot() to
explore the potential effects of these outliers on model “b1”. Turn in a summary
of your findings.

il=influence.measures(bl)

# Count how many observations are ‘‘flagged’’ for a
# particular influence measure:
sum(i1$is.inf[,"cook.d"])

# [1] 1

sum(il1$is.inf [, "hat"])

# [1] 13

# Show all influence measures for those observations

# that were ‘‘flagged’’ for a particular influence measure:
round(il$infmat[i1$is.inf[,"cook.d"], ,drop=F],2)

# dfb.1_
# 365 -2.13 -0.43 -0.62 -3.57 0.57

2.58 -2.84

dfb.rm dfb.I("2 dfb.tax dfb.1lg() dffit cov.r cook.d hat
2.19 0.17



# See which of the above were flagged:
i1$is.inf[i1$is.inf [, "cook.d"], ,drop=F]

# dfb.1_ dfb.rm dfb.I("2 dfb.tax dfb.lg() dffit cov.r cook.d hat
#365  TRUE TRUE TRUE  FALSE FALSE TRUE TRUE TRUE TRUE

#### >>> The missing data messed up the code I originally provided.
#### >>> This is the correct code:

# Show all data for those observations that were ‘‘flagged’’

# for a particular influence measure:

which(il$is.inf[,"cook.d"])

# 365

# 279

bost [rownames (bost)==365, 1]
# rm tax lstat medv

# 365 8.78 666 5.29 21.9

# Put value in perspective as Z-scores
scale(bost) [rownames (bost)==365, ,drop=FALSE]
# rm tax lstat medv
# 365 3.954214 1.535106 -1.052622 0.03357553

summary(il)
# The output has 31 flagged observations out of 490 tracts.

The one observation with high Cook’s D is of most concern. It is tract 365
with a very large number of rooms, a moderately high tax rate, a moderately
low percent lower status, and a typical median house value. From the pairs
plot, you can see that a lot of rooms tends to be associated with a low tax rate,
and a high value, so that explains in what way the tract is unusual.

(5 points) Use bost.mice = mice(bost,10) (after loading package “mice”)
to create 10 imputed datasets, i.e., filling in the missing values. Note that you
can use complete(foo, i) to get the i* imputed dataset for mice result “foo”.
Using, e.g.,
i=1
influencePlot (Im(medv ~ rm + I(rm~2) + tax + log(lstat),
data = complete(bost.mice, i)))

examine a few of the imputed datasets for influential points, and comment on
what you find.

Most of the imputed datasets have similar influence plots, but I see occasional
single extra high leverage points which have high Cook’s D and large (absolute
value) residuals.



(f) (5 points) Run the ten 1m() commands all at once using with(bost.mice,

..). Note that you do not specify data= in your 1lm() command in this

context. Use summary(pool()) on your with() result to get your multiply
imputed regression results. Summarize what the model says.

bost.lms = with(bost.mice, lm(medv ~ rm + I(rm~2) + tax + log(lstat)))
round (summary (pool(bost.1lms)) ,digits=3)

# est se t df Pr(>ltl)
#(Intercept) 94.355 9.020 10.461 235.000 0
#rm -21.615 2.875 -7.518 165.247 0
#I(rm"2) 2.061 0.232 8.873 136.259 0
#tax -0.012 0.001 -8.694 167.340 0
#log(lstat) -5.856 0.504 -11.617 204.257 0
# lo 95 hi 95 missing  fmi
#(Intercept) 76.585 112.124 NA 0.131
#rm -27.292 -15.939 65 0.179
#I(rm"2) 1.602  2.520 NA 0.208
#tax -0.015 -0.009 0 0.178
#log(lstat) -6.850 -4.862 NA 0.150

We see that all of the coefficients are highly statistically significant. The in-
tercept means little. The rm coefficient means that more rooms are associated
with a lower value, while the rm~2 coefficient means that that trend gets less
steep as the number of rooms increases. A higher tax rate correlates with lower
value. (Although the coefficient is small, the range of tax (187 to 711) means
that the change in value from one end of the tax rate to the other is estimated
at (711-187)(0.0118)=6.2 out of a median value IQR of 8.0.) Also, as percent
lower status rises, median values fall, in a non-linear fashion. All of this could

be a misinterpretation if there are important interactions, which we should also
check.

(g) (5 points) Create “bostX” from “bost” by eliminating the single worst outlier.
Repeat the multiple imputation process, and comment on any important dif-
ferences in the multiply imputed model. As a rule of thumb, a 5% change in
a coefficient estimate or a 10% change in a standard error is likely to be of
interest to users of a model.

bostX=bost [-354, ]

bostX.mice= mice(bostX,10)

bostX.lms = with(bostX.mice, lm(medv ~ rm + I(rm~2) + tax + log(lstat)))
round (summary (pool (bostX.1lms)) ,3)

# est se t df Pr(>[t]) 1o 95
#(Intercept) 113.612 8.425 13.484 310.649 0 97.034

10



#rm -28.764 2.625
#I(rm"~2) 2.683 0.212
#tax -0.012 0.001
#log(1lstat) -5.490 0.513
# hi 95 missi
#(Intercept) 130.190
#rm -23.602
#I(rm"~2) 3.099
#tax -0.009
#log(lstat)  -4.469

Dropping the single outlier had major effects on the coefficient estimates and
moderate effects on the standard errors. I would use the model excluding tract
365 for either interpretation of the coefficients or prediction. It is important
to realize that that model will not perform will for tracts like number 365 that

are highly atypical.
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