
36-402/608 Homework #2 Solutions 1/28

1. Serial correlation simulation (25 points)

Examine and load the function ARcorSim() from the file ARcorSim.R. Use this
function along with summary() to calculate the power for nsim=1000, n=25, and
β1 = 0 over the set of “ar” values of 0, 0.2, 0.4, and 0.8 for both β0 = 0 and β0 = 0.2.
Turn in a plot with power on the y-axis, “ar” on the x-axis, and separate curves for
the two intercept values. Use text() to label the curves.

# Get simulation class functions and simulator function

source("http://www.stat.cmu.edu/~hseltman/402/R/SimClass.R")

source("http://www.stat.cmu.edu/~hseltman/402/R/ARcorSim.R")

# The efficient way to make multiple calls to ARcorSim (for

# each ‘‘ar’’ value) is to make a ‘‘wrapper’’ function and

# use sapply(). The wrapper places the variable (ar) in

# the first argument position because the apply functions

# send data to that position of the specified function.

# (It’s OK to use a for loop here, but for serious large-scale

# work, its worth learning apply().)

cs=function(ar, beta0=0)

return(summary(ARcorSim(nsim=1000, n=25, b=c(beta0,0), ar=ar))$power[1]*100)

ars=seq(0,0.8,0.2) # desired values of ‘‘ar’’

# Power values when beta0=0:

p0=sapply(ars, cs)

# Power values when beta0=0.2

p1=sapply(ars, cs, beta0=0.2)

# Create the plot:

plot(ars, p0, type="b", xlab="AR parameter", ylab="Power",

xlim=c(0,1), ylim=c(0,100),

main="Robustness of Intercept Estimate with Autocorrelated Error")

lines(ars, p1, type="b")

text(0.85, p0[length(ars)], "int=0", adj=0)

text(0.85, p1[length(ars)], "int=0.2", adj=0)

# Store the plot in a file:

dev.copy(pdf,"HW2Pr1.pdf"); dev.off()
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Also turn in a brief statement of what you can learn about the robustness of re-
gression analysis for estimation of the intercept under violation of the independent
errors assumption through serial ar1 correlation.

When β0 = 0 we can see that the type-1 error rate is correct (5%) when there is no
serial correlation, but rises considerably as the correlation rises. When β0 = 0.2 we
can see that increasing correlation also has the problem of reducing the power to
detect a non-zero value of the intercept.

2. Power study (25 points)

A proposed experiment is designed to estimate the slope of the relationship between
the explanatory variable “amount of fertilizer” and the outcome “plant growth”. A
reliable estimate of the error variance is σ2 = 64. A reliable estimate of the intercept
is β0 = 120. (These estimates come from previous research reports.) The minimum
meaningful slope is β1 = 0.5. A total of 30 plants will be used, and we need to
choose between two ways of selecting what fertilizer levels to use for these 30 plants.
Using 1000 simulations each, calculate and turn in the power for

(a) half the plants at each of two fertilizer levels of 0 and and 9 vs.

(b) 3 plants each at fertilizer levels 0 through 9 at each whole number.

Turn in your R code, too.

# Make a function to simulate a single dataset

# and return the p-value for the slope.

# I chose the approach of using the passed (first)

# argument to specify which ‘‘x’’ pattern I want.
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# It’s also OK to write two functions or use

# a later function argument, because this is

# constant for each apply().

#

# Remember that rnorm() uses sd, not variance.

#

doOne=function(wideSpacing=TRUE) {

if (wideSpacing) {

x=rep(c(0,9), each=15)

} else {

x=rep(0:9, each=3)

}

y = 120 + 0.5*x + rnorm(30,0,8)

return(coef(summary(lm(y~x)))[2,"Pr(>|t|)"])

}

cat("Wide power:", mean(sapply(rep(T,1000), doOne)<=0.05), "\n")

# Wide power: 0.305

cat("Spread power:", mean(sapply(rep(F,1000), doOne)<=0.05), "\n")

# Spread power: 0.162

Surprisingly to many people, putting all your eggs in two baskets (to paraphrase a
an old saying) is best. Spreading the x values between the extremes reduces power.

Bonus question: What advantage is there to using all ten levels of fertilizer?

In the real world, using only two values for “x” is usually bad practice unless you
are 110% certain that the relationship is linear. We usually spread the values out
to allow informal (residual vs. fit plot) or formal (add x2) testing of linearity.

3. Arm strength study (25 points)

A study was designed to see if people who identify as “ambidextrous” have stronger
left or right arms. The apparatus can only compare arms, and cannot make a
quantitative measurement for either arm. The results are that 20 subjects were
stronger on the right, 5 were equal, and 27 were stronger on the left. Compute a
p-value for the null hypothesis that either arm is equally likely to be stronger. Show
your work.

We throw away the ties, and want to use the normal approximation to the bi-
nomial(20+27,p) distribution to see if Y=20 (or 27) is consistent with p = 0.5.
E(Y |p = 0.5) = 47/2 = 23.5. Var(Y ) = 47/4 = 11.75. Z = 20−23.5√

11.75
= −3.5/3.43 =

−1.02.

p.value=2*pnorm(-1.02)=0.307
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(We never need more that 3 significant figures for a p-value.)

4. Do Sleuth problem 28 on page 107 (25 points)

darwin = read.table("Darwin.dat", header=TRUE)

with(darwin, hist(cross-self, breaks=10))

dev.copy(pdf,"HW2Pr4.pdf"); dev.off()

with(darwin, t.test(cross,self,paired=T))

# Paired t-test

#t = 2.148, df = 14, p-value = 0.0497

#alternative hypothesis: true difference in means is not equal to 0

#95 percent confidence interval:

# 0.003899165 5.229434169

#sample estimates:

#mean of the differences

# 2.616667

with(darwin, wilcox.test(cross,self,paired=T))

# Wilcoxon signed rank test

#V = 96, p-value = 0.04126

#alternative hypothesis: true location shift is not equal to 0
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(a) See above plot

(b) p=0.0497

(c) 95$ CI = [0.00390, 5.229] (again, don’t give meaningless extra significant fig-
ures!!!)
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(d) There does appear to be possible non-normality, in which case the non-parametric
approach would be safer.

(e) p=0.0413

Comment: the p-values are extremely similar, probably because that data really are
consistent with normality.
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