
36-402/608 HW #1 Solutions 1/21/2010

1. t-test (20 points)

Use fullBumpus.R to set up the data from fullBumpus.txt (both at Blackboard/Assignments).
For this problem, analyze the full dataset together – don’t break down by the Group
variable.

(a) Perform two t-tests to see if the weight of the bird differs by survival status,
trying both var.equal=TRUE and var.equal=FALSE. (The latter “adjusts”
for unequal variance.) Turn in your two R statements and the corresponding
output.

> with(sparrow, t.test(Weight[Survive=="Survived"],

Weight[Survive=="Perished"],

var.equal=TRUE))

Two Sample t-test

data: Weight[Survive == "Survived"] and Weight[Survive == "Perished"]

t = -2.6093, df = 134, p-value = 0.01010

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.1399459 -0.1569291

sample estimates:

mean of x mean of y

25.21250 25.86094

> with(sparrow, t.test(Weight[Survive=="Survived"],

Weight[Survive=="Perished"],

var.equal=FALSE))

Welch Two Sample t-test

data: Weight[Survive == "Survived"] and Weight[Survive == "Perished"]

t = -2.5703, df = 117.954, p-value = 0.01141

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.1480287 -0.1488463

(b) With reasonable sample sizes, the t-test is quite robust to (unaffected by) mod-
erate amounts of non-normality. Nevertheless, it is a good idea to check for nor-
mality of errors by examining the residuals with a quantile-normal plot. To get
residuals for this problem, the easiest method is to re-run the analysis as a sim-
ple regression using res = resid(lm(Weight∼Survive, sparrow)). A nice
version of quantile-normal plots with confidence bands is from Brian Junker. To
load it, enter source("http://www.stat.cmu.edu/∼hseltman/files/qqn.R").

Then create the plot using qqn(res), but don’t turn it in. State whether or
not you think that the plot shows evidence of sufficient deviation from the
reference line to suggest a troublesome degree of non-normality.

res = resid(lm(Weight~Survive, sparrow))

source("http://www.stat.cmu.edu/~hseltman/files/qqn.R")

qqn(res)

●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

−2 −1 0 1 2

−
4

−
2

0
2

4

Quantiles of Standard Normal

re
s

Only one point is outside the confidence band, so I would not worry about
non-normality.

(c) The t-test is only moderately robust to unequal variance. Unlike the statistical
significance of the mean difference, equal vs. unequal variance is easily judged
on a side-by-side boxplot. Make a side-by-side boxplot comparing the weight
distribution of surviving and perished sparrows. As a rough rule of thumb if
the ratio of the IQRs is between 0.5 and 2.0, there is no cause for concern about
unequal variances. Roughly what ratio (Survive to Perish, say) do you see?

with(sparrow, boxplot(Weight~Survive))

2

●

●

Perished Survived

24
26

28
30

The ratio is only slightly greater than 1, so I am not worried about breaking
the equal variance assumption.

(d) The t-test is non-robust to correlated errors. We’ll examine this by simulation
next week. Correlation is either serial (adjacent subjects are correlated) or
by some other grouping, e.g., by nest in this example. The intuition is that,
if birds in the same nest are highly correlated in their weights, then there is
really not much more information gained by sampling several vs. one bird per
nest, but the t-test “thinks” that you have a much larger “n” and therefore
inappropriately reduces the estimate of the standard error, resulting in falsely
low p-values and falsely narrow confidence intervals. To get a feel for this,
load HW1FakeCor.txt and make side-by-side boxplots of weight by nest for
both WeightA and WeightB (considered as alternate realities). Which one
corresponds to correlated (within-nest) errors?

fake = read.table("HW1FakeCor.txt")

par(mfrow=c(2,1))

with(fake, boxplot(WeightA~Nest))

with(fake, boxplot(WeightB~Nest))

par(mfrow=c(1,1))

3

●

●

●

●

●

● ●

1 2 3 4 5 6 7 8 9 10

24
25

26
27

28

●

●

●

1 2 3 4 5 6 7 8 9 10

24
25

26
27

28

Although the median to median variation is about the same in both plots,
for the plot of WeightB, the variability within a nest is reduced, suggesting
correlated errors.

2. Regression (20 points)

Now we will pretend that the goal of the bird analysis was to model wing length
(“Alar”) using gender and Weight (without interaction) as explanatory variables.

(a) Turn in the R command to store the lm() result in a variable called “mdl”.
Turn in the result of summary(mdl).

> mdl = lm(Alar~Female+Weight, data=sparrow)

> summary(mdl)

Call:

lm(formula = Alar ~ Female + Weight, data = sparrow)

Residuals:

Min 1Q Median 3Q Max

-13.2387 -2.6125 0.2613 2.8729 11.0747

Coefficients:

4

Estimate Std. Error t value Pr(>|t|)

(Intercept) 202.1958 6.1318 32.975 < 2e-16 ***

FemaleFemale -4.8027 0.7271 -6.605 8.71e-10 ***

Weight 1.7553 0.2372 7.401 1.37e-11 ***

Residual standard error: 3.942 on 133 degrees of freedom

Multiple R-squared: 0.4961, Adjusted R-squared: 0.4885

F-statistic: 65.47 on 2 and 133 DF, p-value: < 2.2e-16

(b) Turn in assignment statements of the form b0M=, b0F=, and b1= which obtain
the estimates of the intercepts and slope from “mdl” using the coef() function.
To do this, you need to think about the structural model for the regression,
and how it simplifies when “Female” is no longer considered to be a variable,
but rather is held constant at 0 (male) or 1 (female). (Do not try to do this
by fitting two separate regressions!)

The means model is

E(Y) = β0 + βF Female + βW Weight

and using the internal coding that Female=0 is a male we get specific means
models of

Males: E(Y) = β0 + βW Weight

and
Females: E(Y) = (β0 + βF) + βW Weight.

Matching the standard meanings of intercept and slope to the equations and
identifying the corresponding positions of the estimates in coef(mdl) results
in these assignments:

b0M = coef(mdl)[1]

b0F = coef(mdl)[1] + coef(mdl)[2]

b1 = coef(mdl)[3]

(c) Make and turn in a single plot summarizing the data and model as follows:

with(sparrow, table(Female, as.numeric(Female)))

with(sparrow, plot(Alar~Weight, pch=as.numeric(Female),

col=as.numeric(Female), main="Bumpus"))

abline(b0M, b1, col=1, lty=1)

abline(b0F, b1, col=2, lty=2)

legend(28, 240, c("Male", "Female"), col=1:2, lty=1:2, pch=1:2)

5

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

24 26 28 30

23
0

23
5

24
0

24
5

25
0

25
5

Bumpus

Weight

A
la

r

● Male
Female

Note that without an interaction between Female and Weight, the fitted lines
are forced to be parallel.

You don’t need to turn anything else in, but it is worthwhile examining the
residual vs. X plot for this model using:

plot(resid(mdl)~sparrow$Weight, col=as.numeric(sparrow$Female),

pch=as.numeric(sparrow$Female))

abline(h=0)

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

24 26 28 30

−
10

−
5

0
5

10

sparrow$Weight

re
si

d(
m

dl
)

(d) Now repeat the whole process with “mdlI” being the interaction model. You’ll
need to redefine b0M and b0F, and now introduce b1M and b1F for the separate
slopes. Turn in the single plot summarizing the data and the interaction model,
with a legend.

6

The simplified means models are:

Males: E(Y) = β0 + βW Weight

and
Females: E(Y) = (β0 + βF) + (βW + βF∗W)Weight.

mdlI = lm(Alar~Female*Weight, data=sparrow)

summary(mdlI)

b0M = coef(mdlI)[1]

b0F = coef(mdlI)[1] + coef(mdlI)[2]

b1M = coef(mdlI)[3]

b1F = coef(mdlI)[3] + coef(mdlI)[4]

with(sparrow, plot(Alar~Weight, pch=as.numeric(Female),

col=as.numeric(Female), main="Bumpus"))

abline(b0M, b1M, col=1, lty=1)

abline(b0F, b1F, col=2, lty=2)

legend(28, 240, c("Male", "Female"), col=1:2, lty=1:2, pch=1:2)

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

24 26 28 30

23
0

23
5

24
0

24
5

25
0

25
5

Bumpus

Weight

A
la

r

● Male
Female

(e) Run anova(mdl,mdlI) and make a claim whether or not we have good evidence
of non-parallel slopes.

> anova(mdl,mdlI)

Analysis of Variance Table

Model 1: Alar ~ Female + Weight

Model 2: Alar ~ Female * Weight

7

Res.Df RSS Df Sum of Sq F Pr(>F)

1 133 2067.1

2 132 2047.3 1 19.810 1.2773 0.2605

This is the “added sum of squares F-test” for the null hypothesis that the
extra interaction term does not add to the model fit any more than expected
by chance. We conclude that we do not have good evidence of non-parallel fit
lines.

(f) Run confint(mdlI) and turn in the 95% CI for the difference of slopes (female
- male).

> confint(mdlI)

2.5 % 97.5 %

(Intercept) 192.2381377 222.683434

FemaleFemale -43.5018377 5.784645

Weight 0.9619145 2.140502

FemaleFemale:Weight -0.4166585 1.527374

The interaction term represents the slope difference (compare the male vs.
female means models to see this). So we want [-0.417, 1.527].

3. Array indexing in R (20 points)

Assign mymat = matrix(c(rep(c(3,5,7,10),4), seq(1,32,2)), nrow=16). Turn
in expressions to get the output listed below. Your statement must work in general,
not just for this specific matrix.

> mymat

[,1] [,2]

[1,] 3 1

[2,] 5 3

[3,] 7 5

[4,] 10 7

[5,] 3 9

[6,] 5 11

[7,] 7 13

[8,] 10 15

[9,] 3 17

[10,] 5 19

[11,] 7 21

[12,] 10 23

[13,] 3 25

[14,] 5 27

[15,] 7 29

[16,] 10 31

8

(a) column one

> mymat[,1]

[1] 3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

(b) the matrix of rows 2, 8, and 5

> mymat[c(2,8,5),]

[,1] [,2]

[1,] 5 3

[2,] 10 15

[3,] 3 9

(c) a logical T/F vector telling whether each row has an even number in column
one (check ?`%%`)

> mymat[,1]%%2==0

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

[13] FALSE FALSE FALSE TRUE

(d) a vector showing the values of column two that corresponds to an even number
in column one

> mymat[mymat[,1]%%2==0, 2]

[1] 7 15 23 31

(e) the even numbered rows

> mymat[rep(c(FALSE,TRUE),nrow(mymat)/2),]

[,1] [,2]

[1,] 5 3

[2,] 10 7

[3,] 5 11

[4,] 10 15

[5,] 5 19

[6,] 10 23

[7,] 5 27

[8,] 10 31

Or (but this won’t work with less than 2 rows):

> mymat[seq(2, nrow(mymat), 2),]

Or:

> mymat[seq(along=mymat[,1])%%2==0,]

(f) the rows where column two is exactly three times column one

> mymat[mymat[,2]==3*mymat[,1],]

[,1] [,2]

[1,] 3 9

[2,] 7 21

9

4. Reading in data in R (20 points) Use various parameters of read.table() to read
in each of the files listed below as a variable named “tmp”. If you did it cor-
rectly, the associated command will give the corresponding results. Turn in just the
read.table() statements. (

(a) easy.txt: mean(tmp$Age, na.rm=TRUE) # [1] 99

tmp = read.table("easy.txt", header=TRUE)

(b) easy.csv: mean(tmp$Age, na.rm=TRUE) # [1] 99

tmp = read.table("easy.csv", header=TRUE, sep=",")

(c) harder.csv: mean(tmp$Age, na.rm=TRUE) # [1] 99

tmp = read.table("harder.csv", header=TRUE, sep=",", na.strings="NA")

(d) hardest.csv: nchar(as.character(tmp$Comment)) # [1] 7 10 11 13 9 13

tmp = read.table("hardest.csv", header=TRUE, sep=",",

quote="\"", comment.char="")

(e) tabbed.txt: mean(tmp$Age, na.rm=TRUE) # [1] 99

tmp = read.table("tabbed.txt", header=TRUE, sep="\t")

5. Function writing in R (20 points)

Starting with the given function, add each additional bit of functionality, then test
the function, before adding the next bit. Turn in the final, complete function.
Remember to update the comments in the code.

As a start set
x = 1:8; y = 2 + 3*x + rnorm(8, 0, 1.5). Then use mylm.R to define:

Function to do some standard EDA, analysis, and residual

checks for simple regression.

Input: x and y are explanatory and response vectors.

Output: returns a list with useful information.

Side effects: make EDA and residual plots if plots==TRUE.

#

mylm = function(x, y, plots=TRUE) {

Some input checking

if (!is.numeric(x) || !is.null(dim(x)))

stop("x must be a numeric vector")

if (!is.numeric(y) || !is.null(dim(y)))

stop("y must be a numeric vector")

if (length(x) != length(y))

stop("x and y must be the same length")

10

The main analysis

mdl = lm(y ~ x)

The optional plotting

if (plots) {

par(mfrow=c(2,1))

plot(y~x)

abline(mdl) # add the fitted line

plot(resid(mdl)~fitted(mdl), xlab="Fitted values", ylab="Residual values")

abline(h=0)

}

Returning the coefficients and the number of usable data points

return(list(coef=coef(mdl), nOK=sum(!is.na(x) & !is.na(y))))

}

Then test the function with:

mylm(x, y)

dev.off()

mylm(y, x, plot=FALSE)

mylm(x, c(y,NA))

mylm(c(x,NA), c(y,NA))

mylm(x*c(1,1,NA,1,1,NA,1,1), y)

mylm(list(x), y)

(a) Examine coef(summary(lm(y∼x))), then add code to also include the p.values
in the output.

(b) Examine confint(lm(y∼x)), then add code to also include the 95% CI for
the slope.

(c) Check the help information for the confint function, then add code to allow the
user of mylm() to input a “level” which defaults to 0.95 but can be changed to
get a different sized confidence interval. Include a check that the value entered
is between 0 and 1 (exclusive) and include the “level” in the output list.

Function to do some standard EDA, analysis, and residual

checks for simple regression.

Input: x and y are explanatory and response vectors.

also the level for the confidence interval.

11

Output: returns a list with useful information:

coef(ficients), nOK (number of usable data points),

p.values, b1 CI and level.

Side effects: make EDA and residual plots if plots==TRUE.

#

mylm = function(x, y, plots=TRUE, level=0.95) {

Some input checking

if (!is.numeric(x) || !is.null(dim(x)))

stop("x must be a numeric vector")

if (!is.numeric(y) || !is.null(dim(y)))

stop("y must be a numeric vector")

if (length(x) != length(y))

stop("x and y must be the same length")

if (!is.numeric(level) || length(level)!=1)

stop("level must be a single number")

if (level<=0 || level>=1)

stop("level must be in (0,1)")

The main analysis

mdl = lm(y ~ x)

The optional plotting

if (plots) {

par(mfrow=c(2,1))

plot(y~x)

abline(mdl) # add the fitted line

plot(resid(mdl)~fitted(mdl), xlab="Fitted values", ylab="Residual values")

abline(h=0)

}

Additional info

p.values = coef(summary(mdl))[,4]

b1ci = confint(mdl, level=level)[2,]

Returning the coefficients and the number of usable data points

return(list(coef=coef(mdl), nOK=sum(!is.na(x) & !is.na(y)),

p.values=p.values, b1CI=b1ci, level=level))

}

12

