
36-402/608 Homework #12 Solutions 4/22

1. Lymphoma and radiation (34 points)

Read problem 19.14 on page 574. Using ex1914.csv, load the data into R using this
code:

lymph = read.csv("ex1914.csv")

lymphA = array(t(cbind(lymph$survive,lymph$died)),

dim=c(2,2,17),

dimnames = list(

outcome=c("survived","died"),

group=c("radiation","no"),

months=lymph$months[seq(1,by=2,length=17)]))

lymphA = aperm(lymphA,c(2,1,3))

Perform the Woolf test (see HO20), and turn in the p-value and its interpretation.

woolf <- function(x) {

x <- x + 1 / 2

k <- dim(x)[3]

or <- apply(x, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

w <- apply(x, 3, function(x) 1 / sum(1 / x))

1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w)) ^ 2), k - 1)

}

woolf(lymphA) # 0.946

With a large p-value of 0.946, we retain the null hypothesis of equal odds ratios
across the different months, so we can proceed to use the Mantel-Haenszel test.

Perform the Mantel-Haenszel test (two-sided). Turn in the M-H p-value, the esti-
mate of the common odds ratio and its CI, and a careful statement of how these are
interpreted.

mantelhaen.test(lymphA)

# Mantel-Haenszel X-squared = 2.3938, df = 1, p-value = 0.1218

# alternative hypothesis: true common odds ratio is not equal to 1

# 95 percent confidence interval:

# 0.1762224 1.1012146

# sample estimates:

# common odds ratio

# 0.4405209



With a p-value of 0.12, we retain the null hypothesis that the common odds ratio
equals 1. As the text states, this can be interpreted as no evidence that the survival
curves differ for those with and without radiation. At each month the odds of
surviving for those in the radiation group is 0.18 to 1.10 times the odds of surviving
in the no radiation group.

2. Trout tumors (33 points)

Read problem 21.16 and load the data from ex2116.csv. Add the variable “noTu-
mors” to the data frame.
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The EDA plots shown here demonstrate that the inverse of the dose is a good
transformation to achieve linearity with the log odds of getting a tumor. Add an
“invDose” variable to the data frame.

Perform binomial logistic regression to model the log odds of a tumor vs. the inverse
dose. Save the glm() object for later use.

trout = read.csv("ex2116.csv")

names(trout)=casefold(names(trout))

trout$noTumor = trout$total - trout$tumor

trout$invDose = 1/trout$dose

trlr = glm(cbind(tumor,noTumor)~invDose, trout, family="binomial")

Perform quasibinomial logistic regression for the same model. Using the code on
page 6 of HO21, obtain a p-value for the test with the null hypothesis of no over-
dispersion. Turn in the p-value.

qtr=glm(cbind(tumor,noTumor)~invDose, trout, family="quasibinomial")
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1 - pchisq(summary(qtr)$dispersion * trlr$df.residual, trlr$df.residual)

# 0.0007922711 (p-value for overdispersion)

Based on the over-dispersion p-value, we must use the quasibinomial results to
correct for over-dispersion (extra-binomial variation). Turn in the summary() for
this model and an interpretation of exp(bx) where x is the inverse dose. (You do
not need to try to “undo” the meaning of the transformation.) Also roughly state
in what way the quasibinomial results change our conclusions about the effects of
dose on tumor production.

summary(qtr)

# Coefficients: Estimate Std. Error t value Pr(>|t|)

# (Intercept) 1.636552 0.135625 12.07 4.62e-10 ***

# invDose -0.046664 0.004069 -11.47 1.04e-09 ***

# (Dispersion parameter for quasibinomial family taken to be 2.390596)

# Null deviance: 667.195 on 19 degrees of freedom

# Residual deviance: 41.809 on 18 degrees of freedom

exp(qtr$coef[2]) # 0.954

# Optional CI:

tmp = summary(qtr)$coef[2,]

round(exp(tmp[1]+c(-1,1)*1.96*tmp[2]), 3) # 0.947 0.962

As the inverse of the dose goes up by one unit, the odds of having a tumor drop by
4.6% (95% CI=[3.8,5.3]), i.e., they are multiplied by 0.954.

3. Mating Elephants (33 points) Turn in R code and a brief summary of your conclu-
sions for the mating elephant problem on page 645 using data from case2201.csv.

An EDA plot is shown here.
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Include a residual plot, as well as a check for extra-Poisson variation using fam-
ily=quasipoisson with your results.
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The residual plot looks fine.

mate = read.csv("case2201.csv")

names(mate)=casefold(names(mate))

m1 = glm(matings ~ age, mate, family="poisson")

qm1 = glm(matings ~ age, mate, family="quasipoisson")

1 - pchisq(summary(qm1)$dispersion * m1$df.residual, m1$df.residual)

# 0.2308694 (so overdispersion is not supported by the evidence)

summary(m1)

# Coefficients: Estimate Std. Error z value Pr(>|z|)

# (Intercept) -1.58201 0.54462 -2.905 0.00368 **

# age 0.06869 0.01375 4.997 5.81e-07 ***

# (Dispersion parameter for poisson family taken to be 1)

# Null deviance: 75.372 on 40 degrees of freedom

# Residual deviance: 51.012 on 39 degrees of freedom

# AIC: 156.46

exp(m1$coef[2]) # 1.07

I conclude that there is a significant increase in the odds of mating (1.07 times as
much) for each year older an elephant gets in the age range studied.
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