36-402/608 Homework #1 due 10:30AM
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1. t-test (20 points)

Use fullBumpus.R to set up the data from fullBumpus.txt (both at Blackboard /Assignments).
For this problem, analyze the full dataset together — don’t break down by the Group
variable.

(a) Perform two t-tests to see if the weight of the bird differs by survival status,
trying both var.equal=TRUE and var.equal=FALSE. (The latter “adjusts”
for unequal variance.) Turn in your two R statements and the corresponding
output.

(b) With reasonable sample sizes, the t-test is quite robust to (unaffected by) mod-
erate amounts of non-normality. Nevertheless, it is a good idea to check for nor-
mality of errors by examining the residuals with a quantile-normal plot. To get
residuals for this problem, the easiest method is to re-run the analysis as a sim-
ple regression using res = resid(lm(Weight~Survive, sparrow)). A nice
version of quantile-normal plots with confidence bands is from Brian Junker. To
load it, enter source ("http://www.stat.cmu.edu/~hseltman/files/qqn.R").
Then create the plot using qgqn(res), but don’t turn it in. State whether or
not you think that the plot shows evidence of sufficient deviation from the
reference line to suggest a troublesome degree of non-normality.

(c¢) The t-test is only moderately robust to unequal variance. Unlike the statistical
significance of the mean difference, equal vs. unequal variance is easily judged
on a side-by-side boxplot. Make a side-by-side boxplot comparing the weight
distribution of surviving and perished sparrows. As a rough rule of thumb if
the ratio of the IQRs is between 0.5 and 2.0, there is no cause for concern about
unequal variances. Roughly what ratio (Survive to Perish, say) do you see?

(d) The t-test is non-robust to correlated errors. We’ll examine this by simulation
next week. Correlation is either serial (adjacent subjects are correlated) or
by some other grouping, e.g., by nest in this example. The intuition is that,
if birds in the same nest are highly correlated in their weights, then there is
really not much more information gained by sampling several vs. one bird per
nest, but the t-test “thinks” that you have a much larger “n” and therefore
inappropriately reduces the estimate of the standard error, resulting in falsely
low p-values and falsely narrow confidence intervals. To get a feel for this,
load HW1FakeCor.txt and make side-by-side boxplots of weight by nest for
both WeightA and WeightB (considered as alternate realities). Which one

corresponds to correlated (within-nest) errors?



2. Regression (20 points)

Now we will pretend that the goal of the bird analysis was to model wing length
(“Alar”) using gender and Weight (without interaction) as explanatory variables.

(a)
(b)

(f)

Turn in the R command to store the Im() result in a variable called “mdl”.
Turn in the result of summary (mdl).

Turn in assignment statements of the form bOM=, bOF=, and bl= which obtain
the estimates of the intercepts and slope from “mdl” using the coef () function.
To do this, you need to think about the structural model for the regression,
and how it simplifies when “Female” is no longer considered to be a variable,
but rather is held constant at 0 (male) or 1 (female). (Do not try to do this
by fitting two separate regressions!)

Make and turn in a single plot summarizing the data and model as follows:

with(sparrow, table(Female, as.numeric(Female)))

with(sparrow, plot(Alar“Weight, pch=as.numeric(Female),
col=as.numeric(Female), main="Bumpus"))

abline(bOM, bl, col=1, 1lty=1)

abline(bOF, bl, col=2, lty=2)

legend (28, 240, c("Male", "Female"), col=1:2, 1lty=1:2, pch=1:2)

If this does not look right, go back to step b.

You don’t need to turn anything else in, but it is worthwhile examining the
residual vs. X plot for this model using:

plot(resid(mdl) “sparrow$Weight, col=as.numeric(sparrow$Female),
pch=as.numeric(sparrow$Female))
abline (h=0)

Now repeat the whole process with “mdlI” being the interaction model. You’ll
need to redefine bOM and bOF, and now introduce b1M and b1F for the separate
slopes. Turn in the single plot summarizing the data and the interaction model,
with a legend.

Run anova(mdl,md1I) and make a claim whether or not we have good evidence
of non-parallel slopes.

Run confint (md1I) and turn in the 95% CI for the difference of slopes (female
- male).

3. Array indexing in R (20 points)

Assign mymat = matrix(c(rep(c(3,5,7,10),4), seq(1,32,2)), nrow=16). Turn
in expressions to get the output listed below. Your statement must work in general,
not just for this specific matrix.



(a) column one

(b) the matrix of rows 2, 8 and 5

(c) a logical T/F vector telling whether each row has an even number in column
one (check ?~%%")

(d) a vector showing the values of column two that corresponds to an even number
in column one

(e) the even numbered rows

(f) the rows where column two is exactly three times column one

4. Reading in data in R (20 points) Use various parameters of read.table() to read
in each of the files listed below as a variable named “tmp”. If you did it cor-
rectly, the associated command will give the corresponding results. Turn in just the
read.table() statements. (

(a) easy.txt: mean(tmp$Age, na.rm=TRUE) # [1] 99

(b) easy.csv: mean(tmp$Age, na.rm=TRUE) # [1] 99

(c) harder.csv: mean(tmp$Age, na.rm=TRUE) # [1] 99

(d) hardest.csv: nchar(as.character (tmp$Comment)) # [1] 7 10 11 13 9 13
)

(e) tabbed.txt: mean(tmp$Age, na.rm=TRUE) # [1] 99

5. Function writing in R (20 points)

Starting with the given function, add each additional bit of functionality, then test
the function, before adding the next bit. Turn in the final, complete function.
Remember to update the comments in the code.

As a start set:
x = 1:8; y =2 + 3xx + rnorm(8, 0, 1.5). Then use mylm.R to define:

# Function to do some standard EDA, analysis, and residual
# checks for simple regression.

# Input: x and y are explanatory and response vectors.

# Output: returns a list with useful information.

# Side effects: make EDA and residual plots if plots==TRUE.
#

mylm = function(x, y, plots=TRUE) {
# Some input checking

if (!is.numeric(x) || !'is.null(dim(x)))
stop("x must be a numeric vector")
if (!'is.numeric(y) || !'is.null(dim(y)))

stop("y must be a numeric vector")
if (length(x) !'= length(y))



stop("x and y must be the same length")

# The main analysis
mdl = 1lm(y ~ x)

# The optional plotting
if (plots) {
par (mfrow=c(2,1))
plot(y™x)
abline(mdl) # add the fitted line
plot(resid(mdl) "fitted(mdl), xlab="Fitted values", ylab="Residual values")
abline (h=0)

# Returning the coefficients and the number of usable data points
return(list (coef=coef (mdl), nOK=sum(!is.na(x) & 'is.na(y))))

Then test the function with:

mylm(x, y)

dev.off ()

mylm(y, x, plot=FALSE)

mylm(x, c(y,NA))

mylm(c(x,NA), c(y,NA))
mylm(x*c(1,1,NA,1,1,NA,1,1), y)
mylm(list(x), y)

(a) Examine coef (summary (1m(y~x))), then add code to also include the p.values
in the output.

(b) Examine confint (1lm(y~x)), then add code to also include the 95% CI for
the slope.

(c¢) Check the help information for the confint function, then add code to allow the
user of mylm() to input a “level” which defaults to 0.95 but can be changed to
get a different sized confidence interval. Include a check that the value entered
is between 0 and 1 (exclusive) and include the “level” in the output list.



