$2/2/2010$ 36-402/608 ADA-II H. Seltman Handout $\#7$: One-way ANOVA

- 1. Analysis of Variance is a "workhorse" of data analysis, rather than an advanced technique.
- 2. Concept of the F test for equal group means

ij

- (a) Focuses on categorical explanatory variables (with Normal outcomes)
- (b) Uses variance-like-quantities as a tool to investigate mean differences.
- (c) Decompose deviations from the grand mean into meaningful components that are orthogonal. This leads to SS (sums of squared deviations) components that meaningfully add up to the total SS.
- (d) $A + B = C \Rightarrow A^2 + B^2 = C^2$ only when A and B are orthogonal, which corresponds to statistically independent.
- (e) One way ANOVA with I groups each with n_i observations Y_{ij} , $j \in \{1, \ldots, n_i\}$:

$$
Y_{ij} - \bar{Y} = (\bar{Y}_i - \bar{Y}) + (Y_{ij} - \bar{Y}_i)
$$

$$
\sum_{ij} (Y_{ij} - \bar{Y}) = \sum_{ij} [(\bar{Y}_i - \bar{Y}) + (Y_{ij} - \bar{Y}_i)] = 0
$$

$$
\sum (Y_{ij} - \bar{Y})^2 = \sum (\bar{Y}_i - \bar{Y})^2 + \sum (Y_{ij} - \bar{Y}_i)^2 + 0
$$

$$
SS_{\text{Total}} = SS_{\text{Between Groups}} + SS_{\text{Within Groups}}
$$

ij

ij

- (f) Definition: $MS = SS/df$, applies to $s_Y^2 = SS_T/(n-1)$.
- (g) Well known fact: For $Y_i \sim N(\mu, \sigma^2)$, $Z_i = \frac{Y_i \mu_i}{\sigma^2}$ $\frac{-\mu_i}{\sigma}$ is standard normal. If Z_1, \ldots, Z_p are independent standard normal variables, then $\sum_{i=1}^p Z^2$ is a chisquare random variable with p df.
- (h) Intuitively similar fact: If a sum of squares of normal deviates (with variance σ^2) has d degrees of freedom, then with SS/σ^2 has a distribution that is chisquared with d degrees of freedom.
- (i) Well known fact: If $U \sim \chi^2_u$ and $V \sim \chi^2_v$ are independent, then $\frac{U/u}{V/v} \sim F_{u,v}$.
- (j) Conclusion: $\frac{SS_B/df_B}{SS_W/df_W} = MS_B/MS_W \sim F_{df_B,df_W}$ if both mean squares have the same variance. MS_W has variance σ_2 , but MS_B has that variance only if $H_0: \mu_1 = \mu_2 = \ldots = \mu_I$, otherwise it has a larger variance.
- 3. Concept of the planned test of contrasts:
	- (a) Let $C_1, ..., C_I$ be a set of coefficients adding to 0.
	- (b) C defines a "contrast null hypothesis": $\gamma = C_1 \mu_1 + \cdots + C_I \mu_i = 0$. E.g., with I=4 and $C=(1,0,-1/2,-1/2)$ this is a test of whether the mean of treatment 1 differs from the average of the means of treatments 3 and 4.
	- (c) The obvious estimate of γ is $G = C_1 \overline{Y}_1 + \cdots + C_I \overline{Y}_I$.
	- (d) If σ^2 is known, the variance pf $a\bar{Y}_1$ is $a^2\frac{\sigma^2}{n_1}$ $\frac{\sigma^2}{n_1}$. The variance of G is $\left(\sum_{i=1}^I C_i^2 \frac{\sigma^2}{n_i}\right)$ ni .
	- (e) If σ^2 is unknown, the best estimate of G's variance is $s_p^2\left(\sum_{i=1}^I C_i^2/n_i\right)$
	- (f) s_p^2 is MS_W in ANOVA or the "residual standard error" in regression.
	- (g) As usual $SE(G) = \sqrt{Var(G)}$.
	- (h) Test $H_0: \gamma = 0$ using $T = \frac{G}{SE(G)}$ with df_W degrees of freedom.
- 4. Breakout and Discussion