
1/14/2010 36-402/608 ADA-II H. Seltman
Handout #2: R Review

1. Finish Tuesday’s lecture notes

2. R housekeeping details

(a) Single document interface: on install or with –sdi option

(b) Windows shortcuts: Under “Properties” change “Start in”

(c) Google search for R-related documents: http://www.rseek.org/

(d) FAQ: http://cran.r-project.org/doc/FAQ/R-FAQ.html

(e) ? vs ?? for help. Backticks for operators: ?`[`or ?`%*%`

(f) Before any “dangerous” operation: save.image()

(g) Avoid defining c, C, D, F, I, q, t, T, time. Check with conflicts().

(h) Use options(locatorBell=FALSE) to turn off the annoying locator() bell.

3. Objects

(a) “Everything is an object”; examine with typeof() or mode()

(b) Vectors: logical, integer, double, complex, character (string), (raw). Elements
are accessed using [foo] notation. What can go inside the square brackets:

i. positive index number(s), possibly with repeats

ii. negative index number(s): for excluding values

iii. a character vector matching names(), possibly with repeats

iv. a logical vector of TRUE/FALSE values (usually full length)

v. can be used on the left: x[3:5]=y[1:3] replaces elements 3, 4, and 5 in x

(c) Lists are “generic vectors”: may have mixed modes; may be nested. Single
elements are accessed using [[foo]] notation. Sub-lists are accessed using [foo]
notation.

(d) Lists and vectors (and other things) have length() values.

(e) A data.frame is a special list with equal length components.

(f) Arrays have a “dim”ension attribute and optionally a “dimnames” attribute,
but are still, at their core, vectors. Their values are accessed using foo[a,b,...,drop=TRUE]
notation. A matrix is a 2-dimensional array with a special matrix() conve-
nience function for construction. Matrices can also be indexed with a 2-column
matrix with row numbers in the first column and column numbers in the second
column:

> x=matrix(1:18, nrow=6, dimnames=list(LETTERS[1:6],1:3))

> x[matrix(c(4,3, 6,2, 1,1), 3, byrow=T)]

[1] 16 12 1

(g) Functions are objects with an argument list, a body, and an environment.
Arguments are passed by value (copied). Some object must be returned (even
if just NULL).

(h) Argument lists can be specified with implicit or explicit names, e.g., read.table("abc.txt",
sep=","). Use, e.g., args(read.table), to list the arguments of non-method,
non-hidden functions.

(i) Environments 1) hold named objects in a “frame” and 2) have a parent (“en-
closing”) environment.

i. On starting R, your (current) environment is “.GlobalEnv”, examined with
ls().

ii. The search() path shows the parents of .GlobalEnv, in order back to
“base” which is the only one to have no parent (actually, R EmptyEnv).

iii. If the value of an object that is not in the current environment is needed,
the parent environment is checked, then its parent, etc. When an ob-
ject is stored with “foo=bar” or “foo<-bar” it is assigned in the current
environment (overwriting or as a new variable).

iv. Calling a function changes your current environment to a new environment
that contains the function arguments (but possibly with delayed evalua-
tion). The parent environment of that environment is the environment
within which the function was created, not called (and is a reference, not
copied).

v. You can use, e.g., get("foo", envir=.GlobalEnv) to read directly from
another environment (here the global environment), e.g., to access a “hid-
den” variable. You can use, e.g., assign("bar", foo, envir=.GlobalEnv)

to assign in another environment, but do this with caution. You can use,
“foo<<-bar” to assign wherever an existing variable is found, but this is
too dangerous to use.

vi. library() and attach() install new items on the search path (by default
in position 2).

vii. (The “namespace” mechanism overrides the search path.)

(j) Attributes of (non-null) objects

i. Generic read: attributes(foo), attr(foo, "bar")

ii. Reading with convenience functions: names(foo), dim(foo), class(foo),
etc.

iii. Generic set: attr(foo, "bar") = foobar

2

iv. Setting with convenience functions: names(foo)=paste("Rx",1:5,sep=""),
etc.

4. read.table() complications

(a) comma-separated-values: use sep=","

(b) tab-separated-values: use sep="\t"
(c) R makes bad factor decisions: use as.is=TRUE, then factor() as needed

(d) Use count.fields() to see how R sees your data.

(e) text contains unquoted apostrophe’s: use quote="\""
(f) text contains unquoted pound signs (hash marks): use comment.char=""

(g) file contains NA codes: use, e.g., na.strings=c("-99","-999") or na.strings="."

(h) non-ASCII file: check “foreign” package or “RExcell”

5. Writing functions

(a) Usually takes the form:

foobar = function(foo, bar) {

...

...

return(someValue)

}

(b) Safest practice is to have all input as arguments.

(c) Best practice is to have good defaults.

(d) Best practice is to check input.

(e) Comment, comment, comment. (But not totally obvious things.)

(f) Indent sensibly and consistently.

(g) Explicit return() line(s) are easiest to read.

(h) It’s OK to use return(NULL).

(i) It’s OK to use, e.g., return(list(a=5, reject=p<=0.05)), but not return(c(a=5,
reject=p<=0.05)).

(j) Test with known input/output. Test some more.

6. Debugging

(a) Insert browser() in your function, re-source() it, then use where to see what
function you are in (including nesting), n to execute the next line, c for con-
tinue, or Q to quit the browser. Also e.g., x or qt(x/y,3) to display expressions,

3

as well as ls(), print(n), and sys.function() to display the code for the
function you are in. Also, e.g., browser(expr=is.na(x)) will start the browser
only if x equals NA.

(b) Use debug(foo), followed by, e.g., foo(arg1, arg2). Use the browser com-
mands above to step through and examine the function from the beginning.
Debugging remains active until the next R session or undebug(foo) or redefi-
nition of “foo”, e.g., with source(foo.R).

(c) Use trace(foo, exit=browser) to stop in the browser just before “foo” re-
turns whenever you call “foo”. Or use as.list(body(foo)) to see the internal
numbering of “foo”, then use, e.g., trace(foo, tracer=browser, at=5) to
stop in the browser just before step 5 in “foo”. Or use trace(foo, edit=TRUE)

to get an editor into which you can insert your own browser() statement(s).
The trace remains in effect, even across R sessions, until you untrace(foo)

(which removes the browser statements) or until you redefine “foo”.

7. *apply() family vs. looping

(a) R is a vectorized language. Loops can and should often be avoided. My favorite
example is a student who brought me code that I vectorized in 6 minutes to
reduce run time from 6 hours to 6 seconds.

(b) apply(foo, index, bar) works on matrix “foo” by applying the function
bar() to each row (if index=1) or column (if index=2). Optional arguments
can be passed to the function, e.g., apply(foo, 1, mean, na.rm=T).

(c) lapply(foo, bar) works on list “foo” by applying function bar() to each
element of the list, returning a list.

(d) sapply(foo, bar) works on list or vector “foo” by applying function bar()

to each element of the list or vector, returning a vector if possible. Sometimes
it’s useful to use foo=1:n or foo=rep(foobar, n), just to collect the results
of “n” repetitions of a call to bar(), e.g.:

myFun = function(n, std=1) return(mean(rnorm(n,0,std)))

sd(sapply(rep(100,1000), myFun, std=5))

(e) tapply(foo, bar, foobar) works on vector “foo”, applying function “foo-
bar”, to each set of “foo” elements corresponding to a level of factor “bar”.

> factor((1:30)%%3)

[1] 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

Levels: 0 1 2

> tapply(1:30, factor((1:30)%%3), mean)

0 1 2

16.5 14.5 15.5

4

8. Anonymous functions

(a) Form: function(x) {y=x^2; z=log(x); return(y/z)}
(b) Example 1:

sd(sapply(rep(100,1000), function(n) mean(rnorm(n,0,5))))

(c) Example 2:

> myMatrix = matrix(rnorm(500,3,4), 5)

> apply(myMatrix, 1, function(x) {

+ m=mean(x); s=sd(x);

+ return(c(mean=m, sd=s, cv=s/m))})

[,1] [,2] [,3] [,4] [,5]

mean 4.4441972 3.786894 3.271766 3.090033 3.125422

sd 4.0784275 4.131218 4.046073 4.303494 3.899681

cv 0.9176972 1.090925 1.236663 1.392702 1.247729

9. Graphics

(a) dev.copy();dev.off() vs., e.g., pdf();dev.off() (or win.metafile, png, jpeg,
etc.)

(b) Use par(mar=c(,,,)) to increase margins and cex.axis= and cex.label= to
make legible axes for posters and projected presentations.

(c) Consider axes=FALSE with plot() followed by axis() to get highly customized
axes.

5

