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Handout #10: The Nature of Serial Correlation

1. Violation of the “independent errors” assumption comes in two basic forms: clus-
tering and serial correlation

2. Important fact: The linear model is unbiased in the presence of serial correlation,
but the standard errors (and therefore confidence intervals and p-values), are wrong.

3. Definition of a “stationary time series”: unchanging mean and variance/covariance
structure across time. Remove trends and mean before analysis.

4. Definition of autocorrelation of lag “m”: covariance of values at times t and t + m
divided by variance of values (covariance at t and t).

5. Uncorrelated errors are called “white noise”.

6. Standard set of serial correlation models for stationary time series (after subtracting
the mean): ARMA

(a) Autoregressive order p or AR(p) models:

Yt =
p∑

i=1

αiYt−i + εi

A large error (also called an “innovation” in time series analysis) has a long
effect in the future. Autocorrelation drops off exponentially. Partial autocor-
relation function graph has p peaks.

(b) Moving average order q or MA(q) models:

Yt =
q∑

i=1

βiεt−i + εi

A large error has a short effect in the future. Autocorrelation drops quickly.
Autocorrelation plot shows 1 + q peaks.

(c) ARMA(p,q) models combine both. ARIMA (Integrated) models handle non-
stationarity.

(d) ARISMA models also handle “seasonality”.

(e) Alternative “spectral” models work in the frequency rather than the time do-
main by using Fourier analysis.

7. Example: “LakeHuron” holds annual measurements of the level, in feet, of Lake
Huron 1875-1972.



8. Plots
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(a) A time trace shows “runs” above and below the mean. This suggests falsely
low standard errors with positive serial correlation, and great unreliability with
very short time series. Non-symmetry of peak shapes suggests the need for a
data transformation.

(b) ACF: autocorrelation function, shows autocorrelation at many time lags; first
peak at lag 0, is always 1.0.

(c) PACF: partial autocorrelation function, is specially designed to identify AR
models, showing p large peaks.

(d) Cumulative periodogram is based on spectral methods, but easily demonstrates
the presence of serial correlation.
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9. Time series functions

(a) ts() makes a time series with associated time information.

(b) ar(data, aic=T, order.max=p) fits AR models up to AR(p) and finds the “best”
as the one with lowest AIC.

> ar(LakeHuron)

Coefficients:

1 2

1.0538 -0.2668

Order selected 2 sigma^2 estimated as 0.5075

> ar(LakeHuron, order.max=4)$aic

0 1 2 3 4

118.6683709 5.2338642 0.0000000 0.3100411 2.1963067

(c) arima(data, order=c(p,0,q)) fits an ARMA(p,q) model and returns the esti-
mated coefficients (alpha values), sigma squared, and residuals (which can be
checked to assure that they are white noise).

> arima(LakeHuron, order=c(2,0,0))

Coefficients:

ar1 ar2 intercept

1.0436 -0.2495 579.0473

s.e. 0.0983 0.1008 0.3319

sigma^2 estimated as 0.4788: log likelihood = -103.63, aic = 215.27

(d) durbin.watson(lm(y x,data=dtf)) in package “car” is a nice test if a regression
can be trusted to not have significant serial correlation.

10. Breakout and Discussion
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