1/12/2010

36-402/608 ADA-II Breakout #1 Results

H. Seltman

Analysis of Sparrow data from Statistical Sleuth, chapter 2. # Full data from: http://students.clarku.edu/~rking/bumpusI.pdf # Note: "case0201.csv" data on book CD has only has adult male humerus data.

Data setup and initial examination
sparrow = read.table("fullBumpus.txt", header=TRUE)
dim(sparrow) # [1] 136 13

Check which columns were converted to factors
sapply(sparrow, class)

Bird Female Adult Survive Length Alar Weight SkullLen
"integer" "integer" "integer" "integer" "integer" "integer" "numeric" "numeric"
Humerus Femur TibTars SkullWid Sternum
"numeric" "numeric" "numeric" "numeric"

```
summary(sparrow[,1:10])
```

#	Bird		Female		Adult			5	Survive			Length		
#	Min.	: 1.00	Min.	:0.0000	Min.	:	0.000) Min		:0.0000) Min.		:152.0	
#	1st Qu.	:17.75	1st Qu.	:0.0000	1st Qu	. :	0.000) 1st	Qu.	:0.0000) 1st	Qu.	:157.0	
#	Median	:34.50	Median	:0.0000	Median	:	1.0000) Medi	ian	:1.0000) Medi	an	:160.0	
#	Mean	:34.62	Mean	:0.3603	Mean	:	0.6782	2 Mear	ı	:0.5294	- Mear	ı	:159.5	
#	3rd Qu.	:51.25	3rd Qu.	:1.0000	3rd Qu	. :	1.0000) 3rd	Qu.	:1.0000) 3rd	Qu.	:162.0	
#	Max.	:72.00	Max.	:1.0000	Max.	:	1.0000) Max		:1.0000) Max.		:167.0	
#					NA's	:4	49.0000)						
#	Alar		Weight		SkullLen			Humerus			Femur			
#	Min.	:230.0	Min.	:22.60	Min.	:29	9.80	Min.	:0.	6590	Min.	:0.	6530	
#	1st Qu.	:242.0	1st Qu.	:24.57	1st Qu.	:3	1.10	1st Qu	.:0.	7180	1st Qu.	:0.	7007	
#	Median	:246.0	Median	:25.50	Median	:3	1.60	Median	:0.	7330	Median	:0.	7130	
#	Mean	:245.3	Mean	:25.52	Mean	:3	1.57	Mean	:0.	7324	Mean	:0.	7130	
#	3rd Qu.	:249.0	3rd Qu.	:26.50	3rd Qu.	:32	2.02	3rd Qu	.:0.	7495	3rd Qu.	:0.	7312	
#	Max.	:256.0	Max.	:31.00	Max.	:33	3.40	Max.	:0.	7800	Max.	:0.	7670	

Make factors from categorical data (based on "indicator" naming)
sparrow\$Survive = factor(sparrow\$Survive, labels=c("Perished","Survived"))
sparrow\$Female = factor(sparrow\$Female, labels=c("Male","Female"))
sparrow\$Adult = factor(sparrow\$Adult, labels=c("Juvenile","Adult"))

```
### Examine data collection structure ###
with(sparrow, table(Survive, Female, Adult))
# , , Adult = Juvenile
#
             Female
# Survive
             Male Female
#
   Perished
               12
                       0
#
   Survived
               16
                       0
# , , Adult = Adult
#
             Female
# Survive
             Male Female
              24
                      0
# Perished
#
 Survived
              35
                      0
#
with(sparrow, table(Survive, Female, Adult, useNA="ifany"))
#, , Adult = Juvenile
#
           Female
            Male Female
# Survive
# Perished
              12
                      0
# Survived
              16
                      0
# , , Adult = Adult
#
            Female
# Survive
            Male Female
# Perished
              24
                      0
# Survived
                      0
              35
# , , Adult = NA
#
             Female
# Survive
             Male Female
# Perished
               0
                     28
# Survived
               0
                     21
# Create a grouping variable to match data collection
# (Does not work if attach() was used.)
sparrow$Group = 1
sparrow$Group[sparrow$Female=="Male"] = 2
sparrow$Group[sparrow$Female=="Male" & sparrow$Adult=="Adult"] = 3
sparrow$Group = factor(sparrow$Group, labels=c("Female",
  "JuvMale", "AdultMale"))
table(sparrow$Group, useNA="ifany")
# Female
           JuvMale AdultMale
#
      49
                28
                          59
```

Graphical EDA ### boxplot(Humerus~Survive, data=sparrow, xlab="Status", ylab="Humerus (inch)", main="Bumpus Full Data")

Bumpus Full Data

```
boxplot(Humerus~Survive+Group, data=sparrow,
```

xlab="Status (Perish/Survive + Female/JuvM/AdultM)", ylab="Humerus (inch)", main="Bumpus Full Data", names= c("PF","SF","PJM","SJM","PAM","SAM"), varwidth=T)

Bumpus Full Data

Use simulation to see how variable similar IID Normal boxplots would be (with n=20). boxplot(split(rnorm(20*30),rep(1:30,each=20)), main="Boxplot Test")

