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1. Simple regression simulation

With sdx=0, this is the usual “fixed x” regression model. With b=c(0,0), the true
values of β1 and β2 are set to zero which are the standard “null hypothesis” values.
We simulate 1000 experiments with 30 subjects each. The distribution of the x
values is (mostly) immaterial.

$estimates

Statistic

Parameter True Value Mean Bias Variance RMSE

Intercept 0.000000000 -0.010462687 -0.010462687 0.135681577 0.368498364

Slope 0.000000000 0.007420337 0.007420337 0.404349842 0.635928379

$power

p.b0 p.b1

0.049 0.045

$coverage

MeanWidth MeanCenter True Coverage

CIb0 1.517241 -0.010462687 0 0.951

CIb1 2.639221 0.007420337 0 0.955

> plot(s1)

For each simulated dataset, we calculate the linear regression results and store the
two coefficient estimates, the two p-values (for H0 : β0 = 0 and for H0 : β1 = 0, and
the two 95% confidence intervals.

Under “estimates” we see that the mean and variance of the 1000 slope estimates
are 0.00742 and 0.404 respectively, i.e., using either the normality assumption or the
central limit theorem, the empiric (observed) distribution of b1 is N(0.00742, 0.404).
We can construct a confidence interval for the population mean that these 1000
values are estimating, using a Z-test (with df=999, there is no practical difference

between t and Z). SE(estimate) =
√
s2/N = 0.404/

√
1000 = 0.0128. The confidence

interval is 0.00742 ± 1.96SE = 0.00742 ± 0.025, so the 95% CI is [-0.0176, 0.0325]
which includes the true value of 0. Therefore we conclude that these results are
consistent with the supposition that the simple linear regression is unbiased.

Note that a b1 s.d. of 0.404 is consistent with the normal shaped histogram of all
1000 b1 values shown in the plots.

The MSE (mean squared error) is define as the square of the bias plus the variance,
and equals the variance for unbiased estimators. RMSE is the square root of MSE,



and can be thought of a measure of how far a single estimate might be from the
true value: roughly 1/3 of values are more that “RMSE” away from the true value
if the estimates are normally distributed.

Since this is a “null” model, the power values of 4.9% and 4.5% should be just
estimates of α. Using the binomial variance of 0.05*0.95/1000, and a normal ap-
proximation this estimate should be within about 0.4% of the true value (between
4.6 and 5.4%) if the t-test works correctly, and it is.

The coverage tells how often, over the 1000 repeated “experiments”, the calculated
95%CI includes the true value (which is known only because we simulated the data).
We expect 95%, and observe values quite near that.

The plots of the 1000 p-values for a true null hypothesis are uniform because that is
the only way for it to be true that the probability of incorrectly rejecting H0 (finding
p ≤ α) equals α for any given value of α.

The plots of CI’s show about 5% of the 1000 missing the true value.

2. Simulation when standard null hypotheses (βi = 0) are false

Here we simulate data with the true parameter values β0 = 0.25 and β1 = 0.5, so the
standard null hypothesis are both definitely false (and we’d like to see both p-value
be ≤ 0.05.

> s2 = eiv(nsim=1000, n=30, b=c(0.25,0.5), sdy=1, sdx=0)

> summary(s2) # (abbreviated results:)

$estimates

Statistic

Parameter True Value Mean Bias Variance RMSE

Intercept 0.25000000 0.26333971 0.01333971 0.14033487 0.37485039

Slope 0.50000000 0.46705637 -0.03294363 0.42228688 0.65067055

$power

p.b0 p.b1

0.098 0.113

$coverage

MeanWidth MeanCenter True Coverage

CIb0 1.520409 0.2633397 0.25 0.948

CIb1 2.642626 0.4670564 0.50 0.953

Again, we conclude that the tests are unbiased with appropriate coverage. Unfortu-
nately the power is quite low, and only a small minority of the repeat “experiments”
correctly rejected the null hypotheses.

We would need to increase the number of subjects, or decrease the outcome vari-
ability (by reducing subject, environmental, measurement, or treatment application
error) to improve the power into an acceptable (> 80%) range.
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3. Errors in variables with b=c(0,0)

Now the null hypotheses are true, but the fixed-x assumption is violated, and the
explanatory variable is measured imprecisely (added measurement error is sdx=1).

> s3 = eiv(nsim=1000, n=30, b=c(0,0), sdy=1, sdx=1)

> summary(s3)

$estimates

Statistic

Parameter True Value Mean Bias Variance RMSE

Intercept 0.000000000 0.003937849 0.003937849 0.043071478 0.207574047

Slope 0.000000000 0.005046648 0.005046648 0.036418210 0.190902274

$power

p.b0 p.b1

0.053 0.054

$coverage

MeanWidth MeanCenter True Coverage

CIb0 0.8400203 0.003937849 0 0.947

CIb1 0.7428122 0.005046648 0 0.946

We still have unbiased estimation, appropriate coverage and appropriate near 5%
type 1 error (power under H0). Somewhat surprisingly the variability of the esti-
mates is reduced.

4. Errors in variables with b=c(0.25,0.5)

This model violates fixed-x and has non-null values of the betas.

> s4 = eiv(nsim=1000, n=30, b=c(0.25,0.5), sdy=1, sdx=1)

> summary(s4)

$estimates

Statistic

Parameter True Value Mean Bias Variance RMSE

Intercept 0.25000000 0.46990074 0.21990074 0.04658917 0.30813228

Slope 0.50000000 0.04452477 -0.45547523 0.03760090 0.49503392

$power

p.b0 p.b1

0.572 0.052

$coverage

MeanWidth MeanCenter True Coverage

CIb0 0.8502235 0.46990074 0.25 0.810

CIb1 0.7596810 0.04452477 0.50 0.342
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This assumption violation has destroyed the reliability of the regression analysis.
The estimate of the intercept is biased away from zero, and the estimate of the
slope (which is usually of primary interest) is biased towards zero. The coverage is
horribly far from 95%, especially for the slope, so our usual statement for any one
experiment that we are 95% confident that the true slope is in some interval will be
mostly incorrect. Also, the power to detect any effect of x on y has been reduced
from 10% to 5% which is really no power at all (power=α).

Violation of the fixed x assumption is a large problem, most commonly resulting in
underestimation of the (absolute) magnitude of the slope.
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5. Breakout #2: Power curve

> summary(eiv(nsim=1000, n=30, b=c(0,0), sdy=1, sdx=0))$power[2]

p.b1

0.058

> b1s = seq(0,2,0.2)

> nb1 = length(b1s)

> pwr = rep(NA, nb1)

> for (i in (1:nb1))

+ pwr[i]=summary(eiv(nsim=1000, n=30, b=c(0,b1s[i]), sdy=1, sdx=0))$power[2]*100

> plot(b1s, pwr, type="b", xlab=expression(beta[1]), ylab="Power", ylim=c(0,100),

+ main=paste("n=30, sdy=1, x=unif(0,1), intercept=0"))
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The code calculates power for each of several possible values of β1. It is a fact that
any experiment has more power to detect a large effect than it has to detect a small
effect. Power does not drop below α because we set things up for any standard test
to reject H0 5% of the time even if there is no real treatment effect. Any of course
power can’t get above 100% (rejecting H0 every time). So we expect a curve with
asymptotes at 5% and 100% and therefore it must have a sigmoid shape.
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6. Set of power curves
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With 11 beta values and 5 n values, there are 55,000 simulated data sets (1,650,000
simulated subjects) used to make the plot. In practice, for any study we can and
should judge a “smallest meaningful effect size”. For example, for a t-test of the
effects of a drug on cholesterol lowering performed by a drug company, they may
decide that a lowering of less than 15 mg/dL on average is not commercially viable,
so they would calculate power for that effect size, knowing that if the true effect size
is larger the power would be larger, and if the true effect size is smaller, then the
would have less power and a greater chance of a type 2 error (but they wouldn’t be
practically concerned by that).

We can use this plot to find an appropriate sample size for the experiment (before
performing it, of course), for whatever particular value of β1 is judged to be the
“smallest meaningful effect size”.
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