Simulation of an experiment

```
x = rnorm(n=100, mean=5, sd=1)
x2 = rnorm(n=100, mean=5, sd=1)
y = rnorm(n=100, mean=15+3*x+4*x2, sd=2.5)
summary(lm(y ~ x))
              Estimate Std. Error t value Pr(>|t|)
# (Intercept)
               39.1052
                           2.7368
                                    14.289 < 2e-16
# x
                2.1867
                           0.5406
                                     4.045 0.000104
summary(lm(y ~ x2))
              Estimate Std. Error t value Pr(>|t|)
                           1.6107
                                     20.22
# (Intercept)
               32.5712
                                             <2e-16
# x2
                3.4515
                           0.3109
                                     11.10
                                             <2e-16
summary(lm(y ~x + x2))
              Estimate Std. Error t value Pr(>|t|)
                                     9.082 1.29e-14
# (Intercept)
               16.8382
                           1.8540
                           0.2690 10.563 < 2e-16
# x
                2.8418
# x2
                3.7677
                           0.2152 17.506 < 2e-16
```

Question 1: Draw a "directed acyclic graph" (DAG) in the form of a simple diagram of the variables x, x2, and y connected with arrows showing causality, i.e. $A \rightarrow B$ means changes in A cause changes in B. Compare the estimated (causal) effects to the true effects. What happens when x and x2 are correlated?

```
x \rightarrow y \leftarrow x2
```

The x coefficients (2.1867 and 2.8418) are estimates of the true causal effect of x on y (when x goes up by 1, y goes up by 3). The x2 coefficients similarly estimate the true x2 causal effect of 4.

Here is an example with correlated x's:

```
library(MASS)
# 0.9 * 1 * 1 = 0.9 # covariance for cor=0.9, vars=1
x34 = mvrnorm(30, mu=c(3,4), Sigma=matrix(c(1,0.9,0.9,1),2))
x3 = x34[,1]
```

```
x4 = x34[,2]
cor(x3, x4) # 0.89
y34 = rnorm(30, mean=15+3*x3+4*x4, sd=7)
summary(lm(y34~x3))
              Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                23.816
                             3.585
                                      6.642 3.31e-07
                             1.075
                                      5.291 1.25e-05
# x3
                 5.686
summary(lm(y34~x4))
              Estimate Std. Error t value Pr(>|t|)
                 15.968
                             4.924
                                      3.243 0.00305
# (Intercept)
                                      5.390 9.55e-06
# x4
                  6.108
                             1.133
summary(lm(y34~x3+x4))
              Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                 18.357
                             5.302
                                      3.462
                                              0.0018
# x3
                  2.765
                             2.367
                                      1.168
                                              0.2529
# x4
                             2.519
                 3.475
                                      1.379
                                              0.1791
```

If x and x2 are correlated, then either or both may be "nonsignificant" in the combined model. This is because with sufficient "shared" information between the x's, neither adds information about y beyond what is provided by the other.

Simulation of an observational study

Question 2: Draw the DAG. Explain why this shows that observational studies can't be used to claim causal relationships.

$$x \leftarrow z \rightarrow y$$

Even though x and z are highly correlated it would be a mistake to conclude that x causes y. In fact z cause x and y, and if we could/would manipulate x, that would have no effect on y. Variable z is a confounder (lurking variable). One or more confounding z's is always

possible (and not unlikely) in any observational study. In a randomized experiment the average of z (and therefore the average causal effect of z on y) is the same for for each level of x, so we can attributed any observed change in y to the manipulation of x.

Simulation of a mediator (causal) model

```
x = rnorm(n=100, mean=20, sd=2)
m = rnorm(n=100, mean=10+3*x, sd=1.5)
y = rnorm(n=100, mean=15+2*m, sd=1)
summary(lm(m ~ x))
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 10.97590
                           1.85094
                                      5.93 4.55e-08
# x
               2.94580
                          0.09072
                                     32.47 < 2e-16
summary(lm(y ~ m))
              Estimate Std. Error t value Pr(>|t|)
                                      13.3
# (Intercept) 15.74659
                           1.18391
                                             <2e-16
# m
               1.99179
                          0.01666
                                     119.5
                                             <2e-16
summary(lm(y ~ x))
              Estimate Std. Error t value Pr(>|t|)
                             3.775
# (Intercept)
                37.431
                                     9.915
                                             <2e-16
# x
                 5.876
                             0.185 31.758
                                             <2e-16
summary(lm(y ~ m + x))
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 15.91940
                           1.22443
                                    13.002
                                             <2e-16
# m
               1.95986
                           0.05733
                                    34.188
                                             <2e-16
# x
               0.10280
                          0.17654
                                     0.582
                                              0.562
```

Question 3: Draw the DAG. Interpret each regression with respect to the DAG. The effects of X on M, M on Y, and X on Y ignoring M (with M not in the model) are called "direct" effects. Relate the X on M and M on Y direct estimates to the simulated (causal) values. The "indirect" effect of X on Y is defined as the product of the two direct effects. How does it relate to the direct effect of X on Y? Explain what happened to the X coefficient in the final model.

$$x \to m \to y$$

This is "complete" mediation when x has no effect on y except through its effect on m. According to the simulation, when x goes up by 1, m goes up by 3 on average. And when

m goes up by 3, y goes up by 6 on average. So when x goes up by 1, y goes up by 6 on average. In general the indirect mediated effect of x on y is the product of the X on M effect (usually designated "a") and the M on Y effect ("b") which equals ab.

The x coefficient becomes non-signficant and falls to near zero when it is in a regression model with y because a change in x while holding m constant has no effect no y, while a change in m while holding x constant would change y. This is another way of stating that m mediates the effect of x on y.

Question 4: Construct a simple set of non-quantitative rules that are based on high (>0.05) vs. low (<=0.05) p-values and that could be used to assess mediated causation.

A common set of rules is:

- 1. the regression of y on x should have a significant (slope) coefficient
- 2. the regression of m on x should have a significant coefficient
- 3. the regression of y on m should have a significant coefficient
- 4. the coefficient of x in the regression of y on m and x should drop to near zero, and its p-value should become non-significant.

A partial mediation model

```
x = rnorm(n=100, mean=20, sd=2)
m = rnorm(n=100, mean=10+3*x, sd=1.5)
y = rnorm(n=100, mean=15+1.5*x+2*m, sd=1)
summary(lm(m ~ x))
              Estimate Std. Error t value Pr(>|t|)
                                                       f
# (Intercept) 11.85906
                          1.51144
                                    7.846 5.39e-12
# x
               2.90992
                          0.07541 38.588 < 2e-16
summary(lm(y ~ m))
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 10.30802
                          1.39136
                                    7.409 4.53e-11
               2.49497
                          0.01983 125.796 < 2e-16
# m
summary(lm(y ~ x))
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 38.4438
                           3.3605
                                     11.44
                                             <2e-16
```

```
# x
                7.3329
                            0.1677
                                     43.74
                                              <2e-16
summary(lm(y ~ m + x))
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 13.36256
                           1.32948
                                    10.051
                                             < 2e-16
# m
               2.11494
                           0.06963
                                    30.372
                                           < 2e-16
# x
               1.17863
                           0.20919
                                     5.634 1.72e-07
```

Question 5: How would you modify the rules to accommodate partial mediation?

In the more common partial mediation (as opposed to complete mediation), the fourth rule becomes "the coefficient of x in the regression of y on m and x should drop, and its p-value should rise.

This additional example shows that use of mediation analysis does *not* protect against false causal conclusions in observational studies. Although the rules suggest that m partially mediates the effect of x on y, x actually has no causal effect on y.

```
> z = rnorm(n=100, mean=20, sd=2)
> x = rnorm(n=100, mean=20+z, sd=1)
> m = rnorm(n=100, mean=10+3*z, sd=1.5)
> y = rnorm(n=100, mean=15+2*m, sd=1)
> summary(lm(m~x))
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -26.2894
                         5.9950
                                 -4.385 2.92e-05 ***
              2.4004
                                  15.930 < 2e-16 ***
                         0.1507
> summary(lm(y~m))
            Estimate Std. Error t value Pr(>|t|)
                                   11.41
(Intercept)
             14.8689
                         1.3036
                                           <2e-16 ***
              2.0006
                                 106.43
                                           <2e-16 ***
                         0.0188
> summary(lm(y~x))
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -39.8781
                         11.8265
                                  -3.372
                                          0.00107 **
              4.8564
                         0.2973
                                 16.338 < 2e-16 ***
> summary(lm(y~x+m))
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.18110
                        2.27895
                                   4.906 3.74e-06 ***
             0.19442
                        0.09922
                                   1.959
                                           0.0529 .
Х
             1.94220
                        0.03511 55.318 < 2e-16 ***
m
```