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Breakout #23: Mediation 1

Simulation of an experiment

x = rnorm(n=100, mean=5, sd=1)
x2 = rnorm(n=100, mean=5, sd=1)
y = rnorm(n=100, mean=15+3*x+4*x2, sd=2.5)

summary (lm(y ~ x))

# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 39.1052 2.7368 14.289 < 2e-16
# x 2.1867 0.5406 4.045 0.000104

summary (lm(y ~ x2))

# Estimate Std. Error t value Pr(>|tl)
# (Intercept) 32.5712 1.6107 20.22 <2e-16
# x2 3.4515 0.3109 11.10 <2e-16

summary (lm(y ~ x + x2))

# Estimate Std. Error t value Pr(>|t])
# (Intercept) 16.8382 1.8540 9.082 1.29e-14
# x 2.8418 0.2690 10.563 < 2e-16
# x2 3.7677 0.2152 17.506 < 2e-16

Question 1: Draw a “directed acyclic graph” (DAG) in the form of a simple
diagram of the variables x, x2, and y connected with arrows showing causality,
i.,e. A—B means changes in A cause changes in B. Compare the estimated
(causal) effects to the true effects. What happens when x and x2 are corre-
lated?

T — Y — 22

The x coefficients (2.1867 and 2.8418) are estimates of the true causal effect of x on y
(when x goes up by 1, y goes up by 3). The x2 coefficients similarly estimate the true x2
causal effect of 4.

Here is an example with correlated x’s:

library (MASS)

# 0.9 x 1 x1=0.9 # covariance for cor=0.9, vars=1

x34 = mvrnorm(30, mu=c(3,4), Sigma=matrix(c(1,0.9,0.9,1),2))
x3 = x34[,1]



x4 = x34[,2]

cor(x3,x4) # 0.89

y34 = rnorm(30, mean=15+3*x3+4*x4, sd=7)
summary (1m(y34~x3))

# Estimate Std. Error t value Pr(>|tl)
# (Intercept) 23.816 3.585 6.642 3.31e-07
# x3 5.686 1.075 5.291 1.25e-05

summary (1m(y34~x4))

# Estimate Std. Error t value Pr(>|t])
# (Intercept) 15.968 4.924 3.243 0.00305
# x4 6.108 1.133 5.390 9.55e-06

summary (1m(y34~x3+x4))

# Estimate Std. Error t value Pr(>|tl)
# (Intercept) 18.357 5.302 3.462 0.0018
# x3 2.765 2.367 1.168 0.2529
# x4 3.475 2.519 1.379 0.1791

If x and x2 are correlated, then either or both may be “nonsignificant” in the combined
model. This is because with sufficient “shared” information between the x’s, neither adds
information about y beyond what is provided by the other.

Simulation of an observational study

z = rnorm(n=100, mean=5, sd=1)

x = rnorm(n=100, mean=20+2%*z, sd=2)

y = rnorm(n=100, mean=15+3%z, sd=1.5)

summary (lm(y ~ x))

# Estimate Std. Error t value Pr(>|tl)
# (Intercept) 7.35008 2.95870 2.484 0.0147
#x 0.76111 0.09902 7.687 1.18e-11

Question 2: Draw the DAG. Explain why this shows that observational studies
can’t be used to claim causal relationships.

T— 22—y

Even though x and z are highly correlated it would be a mistake to conclude that x causes
y. In fact z cause x and y, and if we could/would manipulate x, that would have no effect
on y. Variable z is a confounder (lurking variable). One or more confounding z’s is always
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possible (and not unlikely) in any observational study. In a randomized experiment the
average of z (and therefore the average causal effect of z on y) is the same for for each
level of x, so we can attributed any observed change in y to the manipulation of x.

Simulation of a mediator (causal) model

x = rnorm(n=100, mean=20, sd=2)
rnorm(n=100, mean=10+3*x, sd=1.5)
rnorm(n=100, mean=15+2*m, sd=1)

m
y

summary (lm(m ~ x))

# Estimate Std. Error t value Pr(>|t]|)
# (Intercept) 10.97590 1.85094 5.93 4.55e-08
#x 2.94580 0.09072 32.47 < 2e-16

summary (lm(y ~ m))

# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 15.74659 1.18391 13.3 <2e-16
# m 1.99179 0.01666 119.5 <2e-16

summary (lm(y ~ x))

# Estimate Std. Error t value Pr(>|t]|)
# (Intercept)  37.431 3.775 9.915 <2e-16
# x 5.876 0.185 31.758 <2e-16

summary (Im(y ~ m + x))

# Estimate Std. Error t value Pr(>lt])
# (Intercept) 15.91940 1.22443 13.002 <2e-16
# m 1.95986 0.05733 34.188 <2e-16
# x 0.10280 0.17654 0.582 0.562

Question 3: Draw the DAG. Interpret each regression with respect to the
DAG. The effects of X on M, M on Y, and X on Y ignoring M (with M not in
the model) are called “direct” effects. Relate the X on M and M on Y direct
estimates to the simulated (causal) values. The “indirect” effect of X on Y
is defined as the product of the two direct effects. How does it relate to the
direct effect of X on Y? Explain what happened to the X coefficient in the
final model.

r—m—y

This is “complete” mediation when x has no effect on y except through its effect on m.
According to the simulation, when x goes up by 1, m goes up by 3 on average. And when



m goes up by 3, v goes up by 6 on average. So when x goes up by 1, y goes up by 6 on
average. In general the indirect mediated effect of x on y is the product of the X on M
effect (usually designated “a”) and the M on Y effect (“b”) which equals ab.

The x coefficient becomes non-signficant and falls to near zero when it is in a regression
model with y because a change in x while holding m constant has no effect no y, while
a change in m while holding x constant would change y. This is another way of stating
that m mediates the effect of x on y.

Question 4: Construct a simple set of non-quantitative rules that are based
on high (>0.05) vs. low (<=0.05) p-values and that could be used to assess
mediated causation.

A common set of rules is:
1. the regression of y on x should have a significant (slope) coefficient
2. the regression of m on x should have a significant coefficient
3. the regression of y on m should have a significant coefficient

4. the coefficient of x in the regression of y on m and x should drop to near zero, and
its p-value should become non-significant.

A partial mediation model

x = rnorm(n=100, mean=20, sd=2)
m = rnorm(n=100, mean=10+3*x, sd=1.5)
y = rnorm(n=100, mean=15+1.5%x+2*m, sd=1)

summary (lm(m ~ x))

# Estimate Std. Error t value Pr(>|t|) f
# (Intercept) 11.85906 1.51144 7.846 5.39e-12
# x 2.90992 0.07541 38.588 < 2e-16

summary (lm(y ~ m))

# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 10.30802 1.39136 7.409 4.53e-11
# m 2.49497 0.01983 125.796 < 2e-16

summary (lm(y ~ x))
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 38.4438 3.3605 11.44 <2e-16



# x 7.3329 0.1677 43.74 <2e-16

summary (lm(y ~ m + x))

# Estimate Std. Error t value Pr(>|tl)
# (Intercept) 13.36256 1.32948 10.051 < 2e-16
# m 2.11494 0.06963 30.372 < 2e-16
# x 1.17863 0.20919 5.634 1.72e-07

Question 5: How would you modify the rules to accommodate partial media-
tion?

In the more common partial mediation (as opposed to complete mediation), the fourth
rule becomes “the coefficient of x in the regression of y on m and x should drop, and its
p-value should rise.

This additional example shows that use of mediation analysis does not protect against false
causal conclusions in observational studies. Although the rules suggest that m partially
mediates the effect of x on y, x actually has no causal effect on y.

> z = rnorm(n=100, mean=20, sd=2)
> x = rnorm(n=100, mean=20+z, sd=1)
> m = rnorm(n=100, mean=10+3*z, sd=1.5)
> y = rnorm(n=100, mean=15+2*m, sd=1)
> summary (1lm(m~x))
Estimate Std. Error t value Pr(>|tl)
(Intercept) -26.2894 5.9950 -4.385 2.92e-05 *x*x*
X 2.4004 0.1507 15.930 < 2e-16 **x

> summary (1lm(y~m))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.8689 1.3036 11.41 <2e-16 *x*x
m 2.0006 0.0188 106.43 <2e-16 *xx*

> summary (lm(y~x))

Estimate Std. Error t value Pr(>|tl)
(Intercept) -39.8781 11.8265 -3.372 0.00107 *x
X 4 .8564 0.2973 16.338 < 2e-16 **x

> summary (1m(y~x+m))

Estimate Std. Error t value Pr(>|tl)
(Intercept) 11.18110 2.27895 4.906 3.74e-06 *x*xx*
X 0.19442 0.09922 1.959 0.0529 .
m 1.94220 0.03511 55.318 < 2e-16 **x



