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Remember the bran study with 20 subjects given three diets (baseline, hi-fiber, and lo-
fiber) in random order to see how they affect cholesterol. (We saw that order appeared
to have no effect, and will not use it as a variable.) One way to express the scientific
hypotheses is that we are simultaneously interested in testing µB = (µL + µH)/2 and
µH = µL. Although we could do two separate paired t-tests, we will do a single overall
one-sample test of the two hypotheses.

BHL = bran$hifiber-bran$lofiber

BF = (bran$lofiber+bran$hifiber)/2-bran$baseline

means = matrix(c(mean(BF),mean(BHL)), ncol=1)

n = nrow(bran)

T2 = n * as.numeric(t(means) %*% solve(cov(cbind(BF,BHL))) %*% means)

T2 # 19.70

F = (n-2)/2/(n-1)*T2

F # 9.33

1-pf(F, 2, n-2) # 0.00166

Question 1: How does the code relate to the formulas in the handout? What
conclusion do you reach? What followup testing should be done?

Because no subjects differ in the treatment they recieved from other subjects, the pertinent
section is that for K=1 treatment (with p=3 measurements per subject):

We can construct p− 1 difference variables, then test µ = 0 for the differences. Then the
test is T 2 = n m′ S−1m and n−2

2(n−1)
T 2 follows the F2,n−2 distribution when µ = 0.

The first two lines construct difference variables. The “means” variable is µ. The
code cov(cbind(BF,BHL)) generates S (the estimated variance-covariance matrix), and
solve() computes the inverse. The %*% operator does matrix multiplication, and t()

does matrix transpose. The code pf() looks up the p-value in the F table.

We reject the null hypothesis that both µB = (µL+µH)/2 and µH = µL. This is equivalent
to rejecting the hypothesis that all three population means (of the cholesterol value for
the three diets) are equal. We could do paired t-tests to test each individual hypothesis
as a directed follow-up.

Recall the flea beetle study in which two different measurements are taken on two similar
species of beetles. The question of interest is whether the collection of p=2 measure-
ments are a distinguishing feature between the species (though not necessarily useful for
distinguishing individuals).

> anova(aov(beet[,1:2]~species, data=beet), test="Hotelling")



# Error in model.frame.default(formula = beet[, 1:2] ~ species, data = beet, :

# invalid type (list) for variable ’beet[, 1:2]’

anova(aov(as.matrix(beet[,1:2])~species, data=beet), test="Hotelling")

# Analysis of Variance Table

# Df Hotelling-Lawley approx F num Df den Df Pr(>F)

# (Intercept) 1 344.15 5678.4 2 33 < 2.2e-16 ***

# species 1 4.81 79.4 2 33 2.455e-13 ***

# Residuals 34

Question 2: Why did the first attempt fail? How does the code relate to the
formulas in the handout? How does anova() “know” to do MANOVA? What
conclusion do you reach? How can you get a small p-value and then perhaps
find that these measurements are not very useful for categorizing individual
beetles?

The error message is about an “invalid type” and was fixed by using as.matrix(), so
apparently aov cannot handle a data.frame as input; it needs a matrix.

The fact that we use two column as our response variable in the model formula says we
have p=2 (this is a manova, not an anova), and the fact that species has two levels tells
us that K=2, so we use the formulas of section 2b of the handout. The multicolumn
response tells R to run MANOVA.

The p-value for species is small, so we reject the null hypothesis that both species have
the same population mean vector.

If the two ellipsoids that describe the two bivariate normal distributions of the two mea-
surements have a lot of overlap but do have different population means, then with sufficient
subjects we will get a small p-value and correctly reject the null hypothesis that the two
species have the same two-valued mean. But the overlap indicates that individuals will
be hard to classify just on the basis of these two measurements.

Recall the monkeys being tested for short and long term memory with and without brain
surgery on the hippocampus.
mem$SL = with(mem,cbind(short=(week2+week4)/2,

long=(week8+week12+week16)/3))

anova(aov(SL~treatment, data=mem), test="Hotelling")

# Analysis of Variance Table

# Df Hotelling-Lawley approx F num Df den Df Pr(>F)

# (Intercept) 1 250.795 1880.96 2 15 < 2.2e-16 ***

# treatment 1 1.643 12.32 2 15 0.0006831 ***

# Residuals 16

Question 3: What is the first statement doing? What are the values of p and
K? What conclusion do you reach? What could you do to check assumptions?
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This is an example of a “column” in a data.frame that is actually a matrix. (Technically
this is possible because data.frames are lists of their columns, so the type of data in each
column are is restricted. The multivariate normal dimension is reduced from 5 to 2 (short
vs. long) based on the scientists advice. We have K=2 treatment groups (control vs. brain
surgery). We reject the null hypothesis that the population mean vectors (correct rate for
short and long) are identical for control vs. treated monkeys. Identically we can express
the null hypothesis that the single length-two mean vector (µTS − µCS, µTL − µCL) = 0,
where 0 = (0, 0).

We can make a quantile normal plot (e.g., with qqn()) of the $residuals of the aov

object to check for normality. There is no assumption of independent errors (except
across subjects – they are not allowed to collaborate or cheat off each other). There is
not assumption of equal variances across the p measurements; the variance-covariance
matrix accommodates unequal values on the diagonal. There is an assumption of equal
(population) variance-covariance matrices across treatments, and we can roughly check
that by looking at separate estimated variance covariance matrices, e.g., using:

round(cov(mem$SL[mem$treatment=="CONTROL",]),3)

round(cov(mem$SL[mem$treatment!="CONTROL",]),3)

From previous EDA we know that these are likely unrepresentative due to a far outlier in
each group. I’d rerun the analysis without the outliers (and report both analyses unless
there is a good reason to drop the out strange values).
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