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Breakout #11 Results

This dataset contains quarterly death rates from 1968 to 1993 from two causes: firearms
and motor vehicles.

death = read.csv("ex1514.csv")

dim(death) # 26 3

sapply(death,class)

# year firearm motorVehicle

# "integer" "integer" "integer"

summary(death$year)

# Min. 1st Qu. Median Mean 3rd Qu. Max.

# 1968 1974 1980 1980 1987 1993

#

#Make time series variable to hold times with values:

death$firearm = ts(death$firearm, start=1968, deltat=1)

death$motorVehicle = ts(death$motorVehicle, start=1968, deltat=1)

#

# Make a centered year variable to avoid an intercept at year 0:

death$cYr = death$year - mean(death$year)

sapply(death,class)

# year firearm motorVehicle cYr

# "integer" "ts" "ts" "numeric"

Here is some EDA:

plot(death$firearm, ylim=c(0,max(death[,2:3])))

lines(death$motorVehicle, col=2, lty=2)

legend("bottomleft", c("firearm","motor vehicle"), col=1:2, lty=1:2)



Time

de
at

h$
fir

ea
rm

1970 1975 1980 1985 1990

0
10

20
30

40
50

firearm
motor vehicle

Question 1: What pattern must be fit before looking for serial correlation?
Why not just look at the autocorrelation function plot of the data, instead of
the residuals?

A linear change in deaths over time is seen. If you check autocorrelation directly on the
data, remembering that correlation compares deviations from the mean, adjacent values
will be positively correlated even when the errors are independent.

# A linear model over time:

f0 = lm(firearm~cYr, death)

summary(f0)

# Coefficients:

# Estimate Std. Error t value Pr(>|t|)

# (Intercept) 32.3077 0.4148 77.896 < 2e-16 ***

# cYr 0.4561 0.0553 8.247 1.83e-08 ***

# Residual standard error: 2.115 on 24 degrees of freedom

# Multiple R-squared: 0.7392, Adjusted R-squared: 0.7283

par(mfrow=c(2,2), oma=c(0,0,1.5,0))

plot(resid(f0), type="l"); abline(h=0)

acf(resid(f0)); pacf(resid(f0))

f1 = arima(resid(f0), order=c(1,0,0))

cpgram(f1$resid, main="AR1 residuals")
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mtext("Firearm deaths", outer=T, cex=1.5)
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Question 2: What ARMA model is likely? Do the residuals look like white
noise?

From the exponential pattern in the ACF and the single large peak in the PACF, we
expect an AR(1)=ARMA(1,0,0) model. The cumulative periodogram shows white noise
(all values inside the diagonal dotted lines).

Motor vehicle deaths:

v0 = lm(motorVehicle~cYr, death)

summary(v0)

par(mfrow=c(2,2), oma=c(0,0,1,0))

plot(resid(v0), type="l"); abline(h=0)

acf(resid(v0)); pacf(resid(v0))

v1 = arima(resid(v0), order=c(1,0,0))

v1$aic # [1] 125.3773

v2 = arima(resid(v0), order=c(2,0,0))
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v2$aic

# [1] 118.1716

cpgram(v2$resid, main="AR2 residuals")

mtext("Motor vehicle deaths", outer=T, cex=1.5)

0 5 10 15 20 25

−
6

−
4

−
2

0
2

4

Index

re
si

d(
v0

)

0 2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series  resid(v0)

2 4 6 8 10 12 14

−
0.

4
0.

0
0.

2
0.

4
0.

6

Lag

P
ar

tia
l A

C
F

Series  resid(v0)

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

AR2 residuals

Motor vehicle deaths

Question 3: What ARMA model is suggested by the plots? How does the
AIC help? Do the residuals look like white noise?

With two large PACF peaks we expect AR(2)=ARMA(2,0,0) with a positive and a neg-
ative coefficient. The AIC is much smaller (7 with a “gray zone” of 2), so we really do
prefer AR(2) over AR(1). The residuals show white noise.

Using the calculated AR(1) parameter, we now apply the SE correction method to testing.

# Pull AR(1) parameter out of arima() object:

pac=f1$coef[1] # 0.73249

# SE correction factor for autocorrelation:

SECF = sqrt((1+pac)/(1-pac))
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SECF # 2.544873

Test H0 : βcYr = 0 for firearms:

f0c = summary(f0)$coef

f0c

# Estimate Std. Error t value Pr(>|t|)

# (Intercept) 32.3076923 0.41475366 77.896099 2.257815e-30

# cYr 0.4560684 0.05530049 8.247095 1.834314e-08

#

SEb1Adj = SECF * f0c["cYr","Std. Error"]

SEb1Adj # 0.1407327

tvalFirearm = f0c["cYr","Estimate"] / SEb1Adj

tvalFirearm # 3.24067

# adjusted p-value:

2*pt(-abs(tvalFirearm), f0$df) # 0.00348

Question 4: What is the general approach to getting p-values using t-tests? In
what situations will the serial correlation correction factor be > 1, and what
does this suggest about uncorrected tests?

If any statistic, say W, can be considered to have a Normal sampling distribution (because
it is made of sums, and the data are Normal or there is enough data to use the central
limit theorem), then the quantity T = (W − ν)/SE(W ) follows the t distribution when
the expected value of W is ν and the standard deviation of the sampling distribution of W
(SE of W) is “SE(W)”. The specific SE(W) formula that applies in a given situation will
have σ in it, and when we substitute an estimate rather than the true value of σ we get
a t rather than Z distribution. The df of the t-distribution equals the df in the estimate
of σ.

The correction formula gives 1 (no change) when r=0, and values > 1 when r > 0, and
values < 1 when r < 0, so when r > 0 uncorrected CIs will be too small, and p-values
will be too small, if no correction is made.

Here is a more straightforward approach, in which arima() does the regression and calcu-
lates SE’s directly. Using the xreg= parameter, you can cbind() any number of covariates.

dir = with(death, arima(firearm, order=c(1,0,0), xreg=cbind(cYr)))

# Coefficients:

# ar1 intercept cyr

# 0.7546 32.2488 0.5789

# s.e. 0.1366 1.0353 0.1260

#
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# sigma^2 estimated as 2.073: log likelihood = -46.79, aic = 101.58

dir$coef

# ar1 intercept cYr

# 0.7545671 32.2488344 0.5789409

confint(dir)

# 2.5 % 97.5 %

# ar1 0.4868742 1.0222599

# intercept 30.2197781 34.2778907

# cYr 0.3319665 0.8259153

# Variance covariance matrix:

dir$var.coef

# ar1 intercept cYr

# ar1 0.018654230 -0.004798695 0.007847720

# intercept -0.004798695 1.071746323 -0.002018782

# cYr 0.007847720 -0.002018782 0.015878432

# Obtaining a p-value:

tDirect = dir$coef[3] / sqrt(dir$var.coef[3,3]) # 4.59

2 * pt(-abs(tDirect), length(dir$residuals)-1) # 0.00011

## Test H_0: beta_F0 = beta_V0 (where intercept is 1980.5)

dirVehicle = with(death, arima(motorVehicle, order=c(2,0,0), xreg=cbind(cYr)))

# Variance of a difference is the sum of the variances (when independent).

SEdiff = sqrt(dir$var.coef[3,3] + dirVehicle$var.coef[4,4])

tIntDiff = (dir$coef[3]-dirVehicle$coef[4]) / SEdiff # 6.86

2 * pt(-abs(tIntDiff), 2*nrow(death)-2)

# 9.88 e-09

Question 5: What is a variance-covariance matrix, and how is it used here?
Why did I switch from coef[3] to coef[4] and from [3,3] to [4,4]?

A V-C matrix has variances of several random variables on the diagonal and the covari-
ances of all pairs of the random variables on the off diagonal. Here we have a sampling
V-C matrix of coefficients, so the diagonals are the sampling variances of the coefficients,
and the square root gives the SE.

With AR(2) instead of AR(1) there are two AR parameters to estimate so the position
of the cYr variable moves up by one.
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