
2/10/2010 36-402/608 ADA-II H. Seltman
Breakout #10 Results

The analyses here are from the first Chapter 15 dataset about nitrate runoff from two
streams treated differently (“patch” vs. “nocut”) and measured every 3 weeks for five
years.

forest=read.csv("case1501.csv")

dim(forest) # 88 3

# I hate those all-upper-case names:

names(forest) = casefold(names(forest))

sapply(forest,class)

# week patch nocut

#"integer" "numeric" "numeric"

summary(forest)

# week patch nocut

# Min. : 1.00 Min. :-2.020000 Min. :-1.910000

# 1st Qu.: 66.25 1st Qu.:-0.920000 1st Qu.:-0.810000

# Median :131.50 Median :-0.145000 Median :-0.035000

# Mean :131.50 Mean :-0.001023 Mean :-0.001023

# 3rd Qu.:196.75 3rd Qu.: 0.942500 3rd Qu.: 0.995000

# Max. :262.00 Max. : 2.780000 Max. : 2.140000

# Make time series objects (convenience for good labeling; not needed)

tsp = ts(forest$patch, start=1, deltat=3)

tsn = ts(forest$nocut, start=1, deltat=3)



# EDA of transformed data (from CD) and back-transformed

# original form:

par(mfrow=c(2,2))

plot(tsp); abline(h=0)

tmp=(exp(tsp)-1)*100

plot(tmp-min(tmp), ylab="Original tsp"); abline(h=mean(tmp-min(tmp)))

plot(tsn); abline(h=0)

tmp=(exp(tsn)-1)*100

plot(tmp-min(tmp), ylab="Original tsn"); abline(h=mean(tmp-min(tmp)))

par(mfrow=c(1,1))
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Question 1: What in the plots suggests serial correlation? What suggests the
need for the transformation?

Long runs above and below the mean suggest serial correlation. The difference in shape
of the peaks vs. valleys (on the right) suggests the need for a transformation.
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# Autocorrelation and partial autocorrelation plots:

par(mfrow=c(2,2))

acf(tsp); pacf(tsp)

acf(tsn); pacf(tsn)

par(mfrow=c(1,1))
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Question 2: What do the plots tell us about which ARMA models will fit the
data?

Both series have a long delay pattern on the acf plot, suggesting an AR model. The single
“significant” positive peak at lag one on the pacf plot suggests that AR1 will be sufficient.
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# Cummulative periodogram of data and residuals

# after correcting for AR(1):

par(mfrow=c(2,2))

cpgram(tsp)

cpgram(ar(tsp,order.max=1)$resid)

cpgram(tsn)

cpgram(ar(tsn,order.max=1)$resid)

par(mfrow=c(1,1))
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Question 3: Which plots are consistent with white noise?

The raw data on the left goes outside the “white noise lines”, but the residuals from the
AR1 model look like white noise.
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# Standard AR(I)MA fitting function has AR coefficient as the first
# "order" value and MA as the last. AR and MA coefficient (alpha
and beta from handout notes) along with $\sigma^2$ are estimated,
and aic is calculated.
arima(tsp, order=c(1,0,1))
# Coefficients:
# ar1 ma1 intercept
# 0.7240 -0.2215 -0.0240
# s.e. 0.1106 0.1450 0.3008
# sigma^2 estimated as 1.052: log likelihood = -127.31, aic = 262.61

arima(tsp, order=c(1,0,0))
# Coefficients:
# ar1 intercept
# 0.5746 -0.0114
# s.e. 0.0867 0.2561
# sigma^2 estimated as 1.076: log likelihood = -128.29, aic = 262.58

arima(tsp, order=c(0,0,1))
# Coefficients:
# ma1 intercept
# 0.4089 -0.0025
# s.e. 0.0757 0.1673
# sigma^2 estimated as 1.248: log likelihood = -134.71, aic = 275.43

arima(tsp, order=c(0,0,2))
# Coefficients:
# ma1 ma2 intercept
# 0.4815 0.2579 -0.0011
# s.e. 0.1062 0.0832 0.1958
# sigma^2 estimated as 1.13: log likelihood = -130.39, aic = 268.78

arima(tsp, order=c(2,0,0))
# Coefficients:
# ar1 ar2 intercept
# 0.4822 0.1629 -0.0233
# s.e. 0.1043 0.1056 0.2999
# sigma^2 estimated as 1.047: log likelihood = -127.12, aic = 262.23

Question 4: Using a lower-is-better rule along with “parsimony” and a difference-
of-aic ‘gray zone” of about 2, which model(s) are most worthy of further study?

The AIC is similar and smallest for ARMA(1,0,1), ARMA(1,0,0)=AR(1), and ARMA(2,0,0)=AR(2).
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If time permits, study the code below to gain insight into the meaning of AR and MA.

# white noise:

N=100

barry = rnorm(N)

# Generate "ar1" time series as ar(1).

ar.p1 = 0.6

ar1 = c(barry[1], rep(NA, N-1))

for (i in 2:N) ar1[i] = ar.p1*ar1[i-1] + barry[i]

The long term autocorrelation comes from the fact that each time point’s reflects a fraction
of the previous time point’s data, which reflect a fraction of the previous, etc. This causes
the exponential decay of autocorrelation.
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arima(ar1-mean(ar1), order=c(1,0,0))

# Coefficients:

# ar1 intercept

# 0.6486 -0.0281

# s.e. 0.0753 0.2977

# sigma^2 estimated as 1.133: log likelihood = -148.43, aic = 302.86

The model fitting got 0.65 as an estimate of the true value of 0.6.
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# Generate ar2 time series

ar.p2 = c(0.7, -0.3)

ar2 = c(barry[1], rep(NA, N-1))

ar2[2] = ar.p2[1]*ar2[1] + barry[2]

for (i in 3:100) ar2[i] = ar.p2[1]*ar2[i-1] + ar.p2[2]*ar2[i-2] + barry[i]

Here we have effects “two back” propogating into the present (and future).
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arima(ar2-mean(ar2), order=c(2,0,0))

# Coefficients:

# ar1 ar2 intercept

# 0.8532 -0.3600 -0.0052

# s.e. 0.0928 0.0923 0.1746

# sigma^2 estimated as 0.7875: log likelihood = -130.34, aic = 268.67

The estimates of 0.85 for 0.7 and -0.36 for -0.3 are reasonably good considering that this
is a fairly short time series.
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# Generate ma1 time series

ma.p1 = 0.7

ma1 = c(barry[1], rep(NA, N-1))

for (i in 2:N) ma1[i] = ma.p1*barry[i-1] + barry[i]

As opposed to AR1, MA1 carries only a portion of the noise (error; innovation) foward
rather than the data value. This means that a noise “bump” at any point in time affect
the current and next time, but nothing farther in the future.
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arima(ma1-mean(ma1), order=c(0,0,1))

# Coefficients:

# ma1 intercept

# 0.8000 -0.0073

# s.e. 0.0631 0.1597

# sigma^2 estimated as 0.794: log likelihood = -130.87, aic = 267.74

The estimate of 0.8 is fairly close to the truth of 0.7.
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