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Proof Sketch: Lower Bounds

The lower bound is established with Le Cam’s Lemma.

Suppose Y1, . . . ,Yn drawn iid from Q, an estimator θ̂ ≡ θ̂(Y1, . . . ,Yn),
and a (weak, semi-) metric ρ.

Then for any pair Q0,Q1 ∈ Q

sup
Q∈Q

EQnρ(θ̂, θ(Q)) ≥ Cρ(θ(Q0), θ(Q1))(1− TV(Q0,Q1))2n,

where
TV (Q0(A),Q1(A)) = sup

A
|Q0(A)− Q1(A)| =

1
2

∫
|q0 − q1|.

Hence, for each given Hausdorff distance, we want to choose a least
favorable pair of manifolds whose distributions are as hard to distinguish
as possible.
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Perpendicular Noise: Sketch of Lower Bound

Construct M0 and M1 such that:

• Mi ∈Mκ

• Haus(M1,M0) = γ

• TV ≡
∫
|q1 − q0| = O(γ(d+2)/2), which is minimum possible.

Apply Le Cam’s Lemma: For any M̂:

sup
Q∈Q

EQn Haus(M, M̂) ≥ Haus(M1,M0)× (1− TV)2n

= γ(1− cγ(d+2)/2)2n.

Setting γ = n−2/(d+2) yields the result.

Least Favorable Pair M0 and M1: M0 = plane and M1 = “flying saucer”.
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Perpendicular Noise: Sketch of Upper Bound

Construct an “estimator” that achieves the bound:

1 Split the data into two halves.

2 Using the first half, construct a pilot esimator.
This is a (sieve) maximum likelihood estimator.

3 Cover the pilot estimator with thin, long, slabs.

4 Using the second half of the data, fit local linear
estimators M̂j in slab j

5 M̂ =
⋃

j M̂j .

The details are messy and the estimator is not practical, but
it suffices for establishing the bound.
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Clutter Model

Suppose
Y1, . . . ,Yn ∼ Q ≡ (1− π)U + πG

where 0 < π ≤ 1, U is uniform on the compact set K ⊂ RD, and
G supported on M as before.

Then,

inf
M̂

sup
Q∈Q

EQn Haus(M̂,M) �∗ C
( 1

nπ

) 2
d
.

(The �∗ means I am hiding log factors.)

Lower bound uses the same least favorable pair.
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Clutter Model: Upper Bound

Let

• εn = (log n/n)2/d .
• Q̂n be the empirical measure.
• SM(y) denotes a εd/2 × εD−d slab:

●

y

b1 εn

b2 εn

Define
s(M) = inf

y∈M
Q̂n[SM(y)] and M̂n = argmax

M
s(M).
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Additive Model

X1,X2, . . . ,Xn ∼ G where support(G) = M, and

Yi = Xi + Zi , i = 1, . . . , n,

where Zi ∼ Φ = Gaussian.

This is analogous to an errors-in-variables problem, except:

1 We want to estimate the support of G not G itself.
2 G is singular.
3 The underlying object is a manifold not a function.
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Additive Model

For technical reasons, we allow the manifolds to be noncompact. Define
a truncated loss function,

L(M, M̂) = H(M ∩ K, M̂ ∩ K).

Then,
inf
M̂

sup
Q∈Q

EQ[L(M, M̂)] ≥ C
log n .

Rate is similar to deconvolution but the proof is somewhat different
(since Q0 and Q1 have different supports). Least favorable pair:

M0

M1γ

γ
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Additive Model: Upper Bound

Let ĝ be a deconvolution density estimator (though G has no density),
and let M̂ = {ĝ > λ}.

Fix any 0 < δ < 1/2.

inf
M̂

sup
Q∈Q

EQ[L(M, M̂)] ≤ C
( 1

log n

) 1−δ
2
.

In some special cases, we can achieve 1
log n but, in general, not.
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