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Proof Sketch: Lower Bounds

The lower bound is established with Le Cam’s Lemma.

Suppose Yi,..., Y, drawn 1ID from Q, an estimator 0 = §(Y1, ey Ya),
and a (weak, semi-) metric p.

Then for any pair Qg, @1 € Q

SZZEQW(@ 0(Q)) = Cp(6(Qo), 0(Q1))(1 — TV(Qo, Q1))*",

where

TV(Qu(4). Qu(A)) = sup | Qo(4) ~ Qx(A)| = 5 [ lao — aul.

Hence, for each given Hausdorff distance, we want to choose a least
favorable pair of manifolds whose distributions are as hard to distinguish
as possible.
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Perpendicular Noise: Sketch of Lower Bound

Construct My and M; such that:

L4 MI € M,Lg
° Haus(Ml, Mo) =7
o TV = [|q1 — qo| = O(7{9+2/2), which is minimum possible.
Apply Le Cam's Lemma: For any M:
sup Egn Haus(M, M) > Haus(My, Mp) x (1 — TV)?"
QeQ
_ ’)/(]. N C’}/(d+2)/2)2n.

Setting v = n—2/(9+2) yields the result.

Least Favorable Pair My and My: My = plane and M; = “flying saucer”.
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Perpendicular Noise: Sketch of Upper Bound

Construct an “estimator” that achieves the bound:
@ Split the data into two halves.

® Using the first half, construct a pilot esimator.
This is a (sieve) maximum likelihood estimator.

® Cover the pilot estimator with thin, long, slabs.

O Using the s/e\cond half of the data, fit local linear
estimators M; in slab j

(5] /M:Uj/MJ"

The details are messy and the estimator is not practical, but
it suffices for establishing the bound.
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Clutter Model

Suppose
Yi,. ., Ya~Q=(1-mU+7G

where 0 < m < 1, U is uniform on the compact set K C RPD, and
G supported on M as before.

Then,

NI}

— 1
inf sup Egn Haus(M, M) <* C <>
M QeQ nm

(The <* means | am hiding log factors.)

Lower bound uses the same least favorable pair.
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Clutter Model: Upper Bound

Let

o €, = (logn/n)?/9.
o Q, be the empirical measure.

o Sp(y) denotes a €9/2 x ¢P=9 slab:

—— L

Define - N
s(M) = inf Qn[Sm(y)] and M, = argmaxs(M).
yYeM M



Additive Model

X1, Xa,..., X, ~ G where support(G) = M, and
Y = X; + Z;, i=1,...,n,

where Z; ~ ® = Gaussian.

This is analogous to an errors-in-variables problem, except:

@ We want to estimate the support of G not G itself.
@ G is singular.
© The underlying object is a manifold not a function.
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Additive Model

For technical reasons, we allow the manifolds to be noncompact. Define

a truncated loss function,
L(M,M)=HMNK,MNK).

Then,

inf sup E LI\/I,/I\Z > .
M QeQ ol ) log n

Rate is similar to deconvolution but the proof is somewhat different
(since Qo and Q1 have different supports). Least favorable pair:

< ~ - Mo - -$y
- - VL - -

Y
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Additive Model: Upper Bound

Let g be a deconvolution density estimator (though G has no density),
and let M = {g > \}.

Fix any 0 < 0 < 1/2.

1-46
— 1 2
inf sup Eq[L(M, M §C< ) .
M QeQ altl ) log n

1 .
- but, in general, not.

In some special cases, we can achieve oz
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