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Abstract

We find the minimax rate of convergence in Hausdorff distance for estimating a manifold
M of dimension d embedded in R” given a noisy sample from the manifold. Under certain
conditions, we show that the optimal rate of convergence is n=2/(2t4)_ Thus, the minimax
rate depends only on the dimension of the manifold, not on the dimension of the space in
which M is embedded.

Keywords: Manifold learning, Minimax estimation.

1. Introduction

We consider the problem of estimating a manifold M given noisy observations near the
manifold. The observed data are a random sample Y7,...,Y,, where Y; € RP. The model
for the data is

Yi=&+ 2 (1)
where &1, ..., &, are unobserved variables drawn from a distribution supported on a manifold
M with dimension d < D. The noise variables Z1,...,Z, are drawn from a distribution

F. Our main assumption is that M is a compact, d-dimensional, smooth Riemannian
submanifold in R?; the precise conditions on M are given in Section 2.1.
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A manifold M and a distribution for (£, 7) induce a distribution @ = Qs for Y. In
Section 2.2, we define a class of such distributions

Q={Qu: Mem} 2)

where M is a set of manifolds. Given two sets A and B, the Hausdorff distance between A
and B is

H(A,B):inf{e: ACB®e and BCA@G} (3)
where
Ade= ] Bplz,e) (4)
€A

and Bp(z,€) is an open ball in R” centered at x with radius e. We are interested in the
minimax risk

R,(Q) = inf sup Eq[H (M, M)] (5)
M QeQ
where the infimum is over all estimators M. By an estimator M we mean a measurable
function of Y7, ...,Y,, taking values in the set of all manifolds. Our first main result is the
following minimax lower bound which is proved in Section 3.

Theorem 1 Under assumptions (A1)-(A4) given in Section 2, there is a constant Cy > 0
such that, for all large n,

- 1\ zra
inf sup Eg [H(M, M)] >0 () (6)
M QeQ n

where the infimum is over all estimators M.

Thus, no method of estimating M can have an expected Hausdorff distance smaller than
the stated bound. Note that the rate depends on d but not on D even though the support of
the distribution @ for Y has dimension D. Our second result is the following upper bound
which is proved in Section 4.

Theorem 2 Under assumptions (A1)-(A4) given in Section 2, there exists an estimator
M such that, for all large n,

(7)

n

2
- ] pEw]
sup Eq [H(M,M)} < O ( Og”)
QeQ

for some Cy > 0.

Thus the rate is tight, up to logarithmic factors. The estimator in Theorem 2 is of
theoretical interest because it establishes that the lower bound is tight. But, the estimator
constructed in the proof /o\f that theorem is not practical and so in Section 5, we construct
a very simple estimator M such that

Clogn /b
) ®

sup Eq [H(]\//T,M)] < ( -

QeQ
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This is slower than the minimax rate, but the estimator is computationally very simple and
requires no knowledge of d or the smoothness of M.

Related Work. There is a vast literature on manifold estimation. Much of the litera-
ture deals with using manifolds for the purpose of dimension reduction. See, for example,
Baraniuk and Wakin (2007) and references therein. We are interested instead in actually
estimating the manifold itself. There is a large literature on this problem in the field of
computational geometry; see, for example, Dey (2006), Dey and Goswami (2004), Chazal
and Lieutier (2008) Cheng and Dey (2005) and Boissonnat and Ghosh (2010). However,
very few papers allow for noise in the statistical sense, by which we mean observations
drawn randomly from a distribution. In the literature on computational geometry, obser-
vations are called noisy if they depart from the underlying manifold in a very specific way:
the observations have to be close to the manifold but not too close to each other. This
notion of noise is quite different from random sampling from a distribution. An exception
is Niyogi et al. (2008) who constructed the following estimator. Let I = {i : p(Y;) > A}
where p is a density estimator. They define M = Uier Bp(Yi, €) and they show that if

A and € are chosen properly, then M is homologous to M. (This means that M and M
share certain topological properties.) However, the result does not guarantee closeness in
Hausdorff distance. Note that |J;; Bp(Y;, €) is precisely the Devroye-Wise estimator for
the support of a distribution (Devroye and Wise (1980)).

Notation. Given a set S, we denote its boundary by 0S. We let Bp(x,r) denote a
D-dimensional open ball centered at x with radius . If A is a set and x is a point then we
write d(z, A) = infyc 4 ||z — y|| where || - || is the Euclidean norm. Let

AoB=(ANB°) | J(A°NB) (9)

denote symmetric set difference between sets A and B.

The uniform measure on a manifold M is denoted by ;. Lebesgue measure on R is
denoted by vg. In case k = D, we sometimes write V instead of vp; in other words V(A) is
simply the volume of A. Any integral of the form [ f is understood to be the integral with
respect to Lebesgue measure on R”. If P and @ are two probability measures on R? with
densities p and q then the Hellinger distance between P and () is

fwmrwm@=¢ﬂﬁ—ﬁﬁ:¢(v/w@ (10)

where the integrals are with respect to vp. Recall that

01(p,q) < hip,q) < i(p.q) (11)

where ¢1(p,q) = [|p — ¢|. Let p(z) A ¢(z) = min{p(z), q(z)}. The affinity between P and
Q is
1
iPaQl= [pra=1-3 [l-dl (12)

3
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Let P" denote the n-fold product measure based on n independent observations from P.
In the appendix Section 7.1 we show that

1 1 2n
1 nQ =g (15 [Io-al) (13)

We write X,, = Op(a,) to mean that, for every € > 0 there exists C' > 0 such that
P(|| Xn||/an > C) < € for all large n. Throughout, we use symbols like C, Cy, C1, ¢, co,cq . ..
to denote generic positive constants whose value may be different in different expressions.

2. Model Assumptions
2.1 Manifold Conditions

We shall be concerned with d-dimensional compact Riemannian submanifolds without
boundary embedded in RP with d < D. (Informally, this means that M looks like R?
in a small neighborhood around any point in M.) We assume that M is contained in some
compact set I C RP.

At each u € M let T,M denote the tangent space to M and let T;-M be the normal
space. We can regard T, M as a d-dimensional hyperplane in R” and we can regard T M
as the D — d dimensional hyperplane perpendicular to T, M. Define the fiber of size a at u
to be Ly(u) = Ly(u, M) = T;-M ( Bp(u, a).

Let A(M) be the largest r such that each point in M @ r has a unique projection onto
M. The quantity A(M) will be small if either M highly curved or if M is close to being
self-intersecting. Let M = M (k) denote all d-dimensional manifolds embedded in K such
that A(M) > k. Throughout this paper, « is a fixed positive constant. The quantity A(M)
has been rediscovered many times. It is called the condition number in Niyogi et al. (2006),
the thickness in Gonzalez and Maddocks (1999) and the reach in Federer (1959).

An equivalent definition of A(M) is the following: A(M) is the largest number r such
that the fibers L, (u) never intersect. See Figure 1. Note that if M is a sphere then A(M) is
just the radius of the sphere and if M is a linear space then A(M) = oo. Also, if 0 < A(M)
then M @ o is the disjoint union of its fibers:

M®o= U Ly (u). (14)
ueM
Define tube(M, a) = J,cas La(w). Thus, if o < A(M) then M @ o = tube(M, o).
Let p,q € M. The angle between two tangent spaces T}, and T, is defined to be

angle(Tp, T;) = cos™" (ggl,_;; max [{u—p,v— q)!) (15)

where (u,v) is the usual inner product in RP. Let dy/(p,q) denote the geodesic distance
between p,q € M.
We now summarize some useful results from Niyogi et al. (2006).

Lemma 3 Let M C K be a manifold and suppose that A(M) =r > 0. Let p,q € M.
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Figure 1: The condition number A(M) of a manifold is the largest number x such that the
normals to the manifold do not cross as long as they are not extended beyond
k. The plot on the left shows a one-dimensional manifold (a curve) and some
normals of length » < k. The plot on the right shows the same manifold and
some normals of length r > k.

1. Let v be a geodesic connecting p and q with unit speed parameterization. Then the
curvature of 7y is bounded above by 1/k.

2. cos(angle(Ty,T,)) > 1—dn(p,q)/k. Thus, angle(Ty, Ty) < \/2dn(p,q)/k+o(\/dm(p,q)/K).
3. Ifa=||lp—q|| <K/2 then dp(p,q) < k — k/1 — (2a)/k = a+ o(a).
4. Ifa=|lp—ql| < /2 then a > dr(p,q) — (dar(p, q))?/(25).

5. If |lg — pl| > € and v € Bp(q,€) N T;-M N Bp(p, k) then |[v —p|| < €/k.

6. Fiz any 6 > 0. There exists points x1,...,xny € M such that M C Ujvzl Bp(z;,0)
and such that N < (c/d)%.

For further information about manifolds, see Lee (2002).

2.2 Distributional Assumptions

The distribution of Y is induced by the distribution of £ and Z. We will assume that &
is drawn uniformly on the manifold. Then we assume that Z is drawn uniformly on the
normal to M. More precisely, given ¢, we draw Z uniformly on L,(£). In other words, the
noise is perpendicular to the manifold. The result is that, if ¢ < &, then the distribution
Q = Qu of Y has support equal to M @ o.

The distributional assumption on £ is not critical. Any smooth density bounded away
from 0 on the manifold will lead to similar results. However, the assumption on the noise
Z is critical. We have chosen the simplest noise distribution here. (Perpendicular noise
is also assumed in Niyogi et al. (2008).) In current work, we are deriving the rates for
more complicated noise distributions. The rates are quite different and the proofs are more
complex. Those results will be reported elsewhere.
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The set of distributions we consider is as follows. Let x and o be fixed positive numbers
such that 0 < o < k. Let

QEQMJF{QM:MeMm&. (16)

For any M € M(k) consider the corresponding distribution @, supported on Sy =
M @ o. Let gpr be the density of Qs with respect to Lebesgue measure. We now show that
qum is bounded above and below by a uniform density.

Recall that the essential supremum and essential infimum of gp; are defined by

esssup gy = inf{a eR: vp{y: qu(y) >a}NA) = O}
yeA
and
essinf gy = sup{a eER: vp{y: qu(y) <a}nA) = O}.
yeA

Also recall that, by the Lebesgue density theorem, gas(y) = lime—o Qa(Bp(y,€))/V(Bp(y,€))
for almost all y. Let Ups be the uniform distribution on M @ o and let upy = 1/V(M @ o)
be the density of Ups. Note that, for AC M @ o, Uy(A) =V (A)/V(M & o).

Lemma 4 There exist constants 0 < C, < C* < 00, depending only on x and d, such that

Cy < inf essinf an(y) < sup esssup an(y) <C*.

T MEM yeSy UM(?J) MeM yeSy UM(Z/) -

(17)

Proof Choose any M € M(k). Let x by any point in the interior of Sy;. Let B = Bp(x,¢€)
where € > 0 is small enough so that B C Sy; = M @ 0. Let y be the projection of z onto
M. We want to upper and lower bound Q(B)/V (B). Then we will take the limit as € — 0.
Consider the two spheres of radius « tangent to M at y in the direction of the line between
x and y. (See Figure 2.) Note that Q(B) is maximized by taking M to be equal to the
upper sphere and Q(B) is minimized by taking M to be equal to the lower sphere. Let us
consider first the case where M is equal to the upper sphere. Let

U={ueM: LwnB#0}

be the projection of B onto M. By simple geometry, U = M N Bp(y, re) where

-1
(1+7) =r=(1+3);
K K

Let Vol denote d-dimensional volume on M. Then Vol(Bp(y, re) N M) < cir%elwy where wy
is the volume of a unit d-ball and ¢; depends only on k and d. To see this, note that because
M is a manifold and A(M) > k, it follows that near y, M may be locally parameterized as
a smooth function f = (fi,..., fp—q) over BNT,M. The surface area of the graph of f

over BN TyM is bounded by fBD(y rorrm V1 IV fi||?, which is bounded by a constant
c1 uniformly over M. Hence, Vol(Bp(y,re) N M) < e1Vol(Bp(y,re) N T, M) = cirietw,.
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Let Ajs be the uniform distribution on M and let I'), denote the uniform measure on
Ly(u). Note that, for u € U, L,(u) N B is a (D — d)-ball whose radius is at most e. Hence,

D—d

" wp_ e\D—d
S#:@) _
oD~- o

I'w(Ls(u) N B) op

Thus,

Qu(B) = /M T(B O Ly (1))dA uy (1) = /U Tu(B O Ly (1))dA p (1)

< (5) o () B0
€ETrTw, € - Ed /K dw
= ( )DdVO| d)<<g>D dW

Now, Up(B) = V(B)/V(M @ o) = Pwp /(P4 Vol(M)). Hence,

< 1+2)

Taking limits as € — 0 we have that ¢y (y) < C*up(y) for almost all y.

The proof of the lower bound is similar to the upper bound except for the following
changes: let Uy denote all u € U such that the radius of B N L,(u) is at least €¢/2. Then
A(Up) > A(U)(1—0(e)) and the projection of Uy onto M is again of the form Bp(y, re)N M.
By Lemma 5.3 of Niyogi et al. (2006),

1262\ 42
Vol(Bp(y,r) N M) > <1 - ) rledug

and the latter is larger than 2-%2r%edyy for all small e. Also, T'y(Lg(u) N B) > (e/(20))P~¢
for all u € Uy. |

Of course, an immediate consequence of the above lemma is that, for every M € M(k)
and every measurable set A, C, Up(A) < Qum(A) < C*Up(A). We conclude this section
by recording all the assumptions in Theorems 1 and 2:

(A1) The manifold M is d-dimensional and is contained in a compact set X C R” with
d<D.

(A2) The manifold M satisfies A(M) > k > 0.

(A3) The observed data Y1,...,Y,, are iid observations with Y; = X; +&;. Here, &1,...,&,
are drawn uniformly on M. X; given &; is drawn uniformly on L, (&;) = Té (Bp(&, o).

(A4) The noise level o satisfies 0 < o < k.
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Figure 2: Figure for proof of Lemma 4. x is a point in the support M @®o. y is the projection
of z onto M. The two spheres are tangent to M at y and have radius k.

Remark: As noted by a referee, the assumptions are very specific and the results do
depend critically on the assumptions especially the assumption that d is known.

Remark: A referee has pointed out that another reasonable model is to assume that
the Y; have a uniform distribution on the tube of size o around the manifold. To the best
of our knowledge, this does not correspond to our model except in the special case where
A(M) = co. However, all the results of our paper still apply in this case as long as o < k.

3. Minimax Lower Bound

In this section we derive a lower bound on the minimax rate of convergence for this problem.
We will make use of the following result due to LeCam (1973). The following version is
from Lemma 1 of Yu (1997).

Lemma 5 (Le Cam 1973) Let Q be a set of distributions. Let 0(Q) take values in a
metric space with metric p. Let Qqp, Q1 € Q be any pair of distributions in Q. Let Y1,...,Y,
be drawn iid from some QQ € Q and denote the corresponding product measure by Q™. Let

~

0(Y1,...,Y,) be any estimator. Then

sup Egn [p(0(%3,.¥0). 6(Q)] > p(6(@0).6(Q0) 106 A @1l (18)

To get a useful bound from Le Cam’s lemma, we need to construct an appropriate pair
Qo and 1. This is the topic of the next subsection.
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3.1 A Geometric Construction

In this section, we construct a pair of manifolds My, M; € M(k) and corresponding distri-
butions Qq, @1 for use in Le Cam’s lemma. An informal description is as follows. Roughly
speaking, My and M; minimize the Hellinger distance h(Qo, Q1) subject to their Hausdorff
distance H(My, M) being equal to a given value +.
Let
Moz{(ul,...,ud,O,...,O): —1§uj§1,1§j§d} (19)

be a d-dimensional hyperplane in RP. Hence A(Mp) = oo. Place a hypersphere of radius
K below Mjy. Push the sphere upwards into My causing a bump of height v at the origin.
This creates a new manifold M| such that H(My, M) = ~v. However, M| is not smooth.
We will roll a sphere of radius x around M| to get a smooth manifold M; as in Figure 3.
We re-iterate that this is only an informal description and the reader should see Section 7.2
for the formal details.

Theorem 6 Let v be a small positive number. Let My and My be as defined in Section
7.2. Let QQ; be the corresponding distributions on M; & o for i =0,1. Then:

1. A(M;) >k, i=0,1.
2. H(Mo,Ml) =.
3. [lao — a1l = O((2)/2).

Proof See Section 7.2. [ |

3.2 Proof of the Lower Bound

Now we are in a position to prove the first theorem. Let us first restate the theorem.

Theorem 1. Under assumptions (A1)-(A4), there is a constant C' > 0 such that, for all
large n,
— 2
inf sup Eg [H(M, M)} > On” 7 (20)
M QeQ

where the infimum is over all estimators M.

Proof of Theorem 1. Let My and M; be as defined in Section 3.1. Let @; be the uniform
distribution on M; ® o, i = 0,1. Let ¢; be the density of Q); with respect to Lebesgue
measure vp, i = 0, 1. Then, from Theorem 6, H (Mo, M) = v and [ |g0 — q1| = O(y(@+2)/2).
Le Cam’s lemma then gives, for any M ,

sup Eqn [H(M, A1) > H(Mo, M) [|Q5 A Q1| = (1 = e 2/
S

where we used equation (13). Setting v = n=%/(4+2) yields the result. B
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D

Figure 3: A sphere of radius « is pushed upwards into the plane My (panel A). The resulting
manifold M) is not smooth (panel B). A sphere is then rolled around the manifold
(panel C) to produce a smooth manifold M; (panel D).

10
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4. Upper bound

To establish the upper bound, we will construct an estimator that achieves the appropriate
rate. The estimator is intended only for the theoretical purpose of establishing the rate. (A
simpler but non-optimal method is discussed in Section 5.) Recall that M = M(k) is the
set of all d-dimensional submanifolds M contained in K such that A(M) > x > 0. Before
proceeding, we need to discuss sieve maximum likelihood.

Sieve Maximum Likelihood. Let P be any set of distributions such that each P € P
has a density p with respect to Lebesgue measure vp. Recall that h denotes Hellinger
distance. A set of pairs of functions B = {(¢1,u1), ..., (¢n,un)} is an e-Hellinger bracketing
for P if, (i) for each p € P there is a (¢,u) € B such that ¢(y) < p(y) < u(y) for all y and (ii)
h(¢,u) < e. The logarithm of the size of the smallest e-bracketing is called the bracketing
entropy and is denoted by H[](e, P, h).

We will make use of the following result which is Example 4 of Shen and Wong (1995).

Theorem 7 (Shen and Wong (1995)) Let €, solve the equation Hyj(en, P,h) = nep.
Let (€1,u1),...,({n,un) be an e, bracketing where N = H[)(en, P,h). Define the set of
densities Sy = {p,...,py} where p; =i/ [u. Let p* mazimize the likelihood [T}, pi (Y;)
over the set S},. Then

sup P" ({h(p,5") > en}) < crec2mn. (21)
PepP

The sequence {S;;} in Theorem 7 is called a sieve and the estimator p* is called a sieve-
mazximum likelihood estimator. The estimator p* need not be in P. We will actually need
an estimator that is contained in P. We may construct one as follows. Let p* be the sieve
mle corresponding to ;. Then p* = pf for some ¢. Let (¢,%) = (¢;, u) be the corresponding
bracket.

Lemma 8 Assume the conditions in Theorem 7. Let D be any density in P such that
(<p<u. Ife, <1 then

sup P" ({h(p.7) > cen) < (22)

Proof By the triangle inequality, h(p,p) < h(p,p*) + h(p,p*) = h(p,D*) + h(P,ut/ [ us)
where p* = u;/ [u; for some ¢. From Theorem 7, h(p,p*) < €, with high probability.
Thus we need to show that h(p,u¢/ [u;) < Ce,. It suffices to show that, in general,
h(p,u/ [u) < Ch(l,u) whenever £ < p < w.

Let (¢,u) be a bracket and let 6 = h?(¢,u) < 1. Let £ < p < u. We claim that
h%(p,u/ [u) < 482, (Taking § = €, then proves the result.) Let ¢ = [u. Then 1 < ¢ =

11
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fu=[p+ [(u—p) =1+ [(u—p) =1+ (u,p) <1+ 2h(u,l) =1+ 25. Now,

(v s) = o=t =% [(i- e < Wi e

= (Wi VB + - Dy 2 [ (Vi— VB + 2 12
< 2024 2(V1 420 —1)% <262 + 262 = 462

where the last inequality used the fact that § < 1. |

In light of the above result, we define modified maximum likelihood sieve estimator p to
be any p € P such that £ < p < 7. For simplicity, in the rest of the paper, we refer to the
modified sieve estimator p, simply as the maximum likelihood estimator (mle).

Outline of proof. ‘

We are now ready to find an estimator M that converges at the optimal rate (up to loga-
rithmic terms.) Our strategy for estimating M has the following steps:

Step 1.
Step 2.

Step 3.

We split the data into two halves.

Let @ be the maximum likelihood estimator using the first half of the data. Define
M to be the corresponding manifold. We call M , the pilot estimator. We show that
M is a consistent estimator of M that converges at a sub-optimal rate a,, = niﬁ.
To show this we:

a. Compute the Hellinger bracketing entropy of Q. (Theorem 9, Lemmas 10 and
11).

b. Establish the rate of convergence of the mle in Hellinger distance, using the
bracketing entropy and Theorem 7.

c. Relate the Hausdorff distance to the Hellinger distance and hence establish the
rate of convergence a,, of the mle in Hausdorff distance. (Lemma 13).

d. Conclude that the true manifold is contained, with high probability, in M,, =
{M € M(k) : HM,M) < a,} (Lemma 14). Hence, we can now restrict
attention to M,,.

To improve the pilot estimator, we need to control the relationship between Hellinger
and Hausdorff distance and thus need to work over small sets on which the manifold
cannot vary too greatly. Hence, we cover the pilot estimator with long, thin slabs
Ri,...,Ry. We do this by first covering M with spheres 1q,...,J5 of radius §, =
O((logn/n)"/?+4)) We define a slab R; to be the union of fibers of size b = o + a,
within one of the spheres: R; = Ugex, Ly(z, M) We then show that:

a. The set of fibers on M cover each M € M, in a nice way. In particular, if
M € M,, then each fiber from M is nearly normal to M. (Lemma 15).

b. As M cuts through a slab, it stays nearly parallel to M. Roughly speaking, M
behaves like a smooth, nearly linear function within each slab. (Lemma 16).

12
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Step 4. Using the second half oﬁ\the data, we apply maximum likelihood within each slab.
This defines estimators M, for 1 < j < N. We show that:

a. The entropy of the set of distributions within a slab is very small. (Lemma 18).

b. Because the entropy is small, the maximum likelihood estimator within a slab
converges fairly quickly in Hellinger distance. The rate is €, = (logn/n)/(?+d).
(Lemma 19).

c. Within a slab, there is a tight relationship between Hellinger distance and Haus-
dorff distance. Specifically, H(Mi, Ms) < ch?(Q1,Q2). (Lemma 20).

d. Steps (4b) and (4c) imply that H(MNR;, ]\/Zj) = Op(€2) = Op((logn/n)?/(4+2)),
Step 5. Finally we define M = U;V: 1 ]\/4\J and show that M converges at the optimal rate

because each ]\/ZJ does within its own slab.

The reason for getting a preliminary estimator and then covering the estimator with
thin slabs is that, within a slab, there is a tight relationship between Hellinger distance and
Hausdorff distance. This is not true globally but only in thin slabs. Maximum likelihood
is optimal with respect to Hellinger distance. Within a slab, this allows us to get optimal
rates in Hausdorff distance.

Step 1:| Data Splitting

For simplicity assume the sample size is even and denote it by 2n. We split the data into
two halves which we denote by X = (X1,...,X,) and Y = (Y1,...,Y,).

Step 2:| Pilot Estimator

Let ¢ be the maximum likelihood estimator over Q. Let M be the corresponding manifold.
To study the properties of M requires two steps: computing the bracketing entropy of Q
and relating H(M, M) to h(q,q). The former allows us to apply Theorem 7 to bound h(q, q),
and the latter allows us to control the Hausdorff distance.

Step 2a: Computing the Entropy of Q. To compute the entropy of Q we start by
constructing a finite net of manifolds to cover M(k). A finite set of d-manifolds M, =
{M;i,..., My} is a y-net (or a y-cover) if, for each M € M there exists M; € M., such that
H(M,M;) <~. Let N(v) = N(v, M, H) be the size of the smallest covering set, called the
(Hausdorff) covering number of M.

Theorem 9 The Hausdorff covering number of M satisfies the following:

N(7) = Ny, M, H) < 1 ra(k,d, D) exp (s(,d, D)y~ 92) = cexp (972)  (23)

C2/K D
where ka(k,d, D) = (g)( /%" ond k3(k,d, D) = 292(D —d)(ca/k)P, for a constant cy that
depends only on k and d.

13
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Proof Recall that the manifolds in M all lie within IC. Consider any hypercube containing
K. Divide this cube into a grid of J = (2¢/k)” sub-cubes {C1,...,C;} of side length x/c,
where ¢ > 4 is a positive constant chosen to be sufficiently large. Our strategy is to show
that within each of these cubes, the manifold is the graph of a smooth function. We then
only need count the number of such smooth functions.

In thinking about the manifold as (locally) the graph of a smooth function, it helps
to be able to translate easily between the natural coordinates in K and the domain-range
coordinates of the function. To that end, within each subcube C; for j € {1,...,J}, we
define K = (5 ) coordinate frames, Fj;, for k € {1,..., K}, in which d out of D coordinates
are labeled as “domain” and the remaining D — d coordinates are labeled as “range.”

Each frame is associated with a relabeling of the coordinates so that the d “domain”
coordinates are listed first and D — d “range” coordinates last. That is, Fj is defined
by a one-to-one correspondence between z € C; and (u,v) € mjx(z) where u € R? and
v e RP~4 and mik(21,...,xp) = (ziy, ..., Tiy, Tjy, ..., x5, ,) for domain coordinate indices
i1 < ... < iq and range coordinate indices j; < ... < jp_q.

We define domain(Fj) = {u € R?: Jv € RP~? such that (u,v) € Fj}, and let Gjx
denote the class of functions defined on domain(Fj;) whose second derivative (i.e., second
fundamental form) is bounded above by a constant C'(k) that depends only on . To say
that a set R C Cj is the graph of a function on a d-dimensional subset of the coordinates
in C; is equivalent to saying that for some frame Fj, and some set A C domain(Fjy;),
R = 7rj_k1 (u, f(u)) : ue A}.

We will prove the theorem by establishing the following claims.

Claim 1. Let M € M and C; be a subcube that intersects M. Then: (i) for at least one
ke {1,...,K}, the set M N C; is the graph of a function (i.e., single-valued mapping)
defined on a set A C domain(Fjj), of the form (ui,...,uq) — Wﬁgl((u,f(u))) for some
function f on A, and (ii) this function lies in Gjj.

Claim 2. M is in one-to-one correspondence with a subset of G = H}]:l Ule Gjk-

Claim 8. The L covering number of G satisfies

N(v,G,L>) < ¢ <d> o exp ((D - d)(QC//{)D’)/_d/Q) .

Claim 4. There is a one-to-one correspondence between an /2 L%-cover of G and an ~
Hausdorff-cover of M.

Taken together, the claims imply that

(2¢/r)P
Ny, M, H) < &1 <d) exp((D — d)(2¢/k)P2%2y74/2).
Taking co = 2¢ proves the theorem.

14
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Proof of Claim 1. We begin by showing that (i) implies (ii). By part 1 of Lemma 3, each
M € M has curvature (second fundamental form) bounded above by 1/x. This implies that
the function identified in (i) has uniformly bounded second derivative and thus lies in the
corresponding Gj.

We prove (i) by contradiction. Suppose that there is an M € M such that for every j
with M N C; # 0, the set M N Cj is not the graph of a single-valued mapping for any of the
K coordinate frames.

Fix j € {1,...,J}. Then in each domain(Fj;), there is a point u such that C; N

“Hu x RP=?) intersects M in at least two points, call them a; and by. By construction

T

Jk
llax — bx|| < VD — d- k/c, and hence by choosing ¢ large enough (making the cubes small),
part 3 of Lemma 3 tells us that dps(ag, bx) < 24/ D — dk/c. Then we argue as follows:

1. By parts 2 and 3 of Lemma 3 and the fact that C; has diameter v Dr/c and
2v D
le(T, M, T,M)) >1— .

| masx | cos(angle(T, M. T,00)) > 1~ =%

For large enough ¢, the maximum angle between tangent vectors can be made smaller
than /3.

2. By part 2 of Lemma 3, any point z along a geodesic between a; and by,

2vD —d

Cc

cos(angle(T, M,T.M)) > 1 —

It follows that there is a point in C; N M and a tangent vector vy at that point such
that angle(vg, by, — ax) = O(1//c).

3. We have for each of K = (g) coordinate frames and associated tangent vectors
v1,...,Vx that are each nearly orthogonal to at least d of the others. Consequently,
there are > d + 1 nearly orthogonal tangent vectors of M within C;. This contradicts
point 1 and proves the claim.

Proof of Claim 2. We construct the correspondence as follows. For each cube Cj, let
k7 be the smallest k& such that M N Cj is the graph of a function ¢; € Gj; as in Claim 1.
Map M to ¢ = (¢1k;, - - -, $uks), and let F C G be the image of this map. If M # M’ € M,
then the corresponding ¢ and ¢’ must be distinct. If not, then M N C; = M’ N C; for
all j, contradicting M # M'. The correspondence from M to F is thus a one-to-one
correspondence.

Proof of Claim 3. From the results in Birman and Solomjak (1967), the set of functions
defined on a pre-compact d-dimensional set that take values in a fixed dimension space
R™ with uniformly bounded second derivative has L*° covering number bounded above by
clem(l/ M for some c1. Part 1 of Lemma 3 shows that each M € M has curvature (second
fundamental form) bounded above by 1/k, so each Gjj satisfies Birman and Solomjak’s

(D—d)(1/7)%/?

conditions. Hence, N(v,Gji, L) < cre Because all the Gj;;’s are disjoint,

J
simple counting arguments show that N(v,G, L) = ((g)N('y, Gik, LOO)) , where J is the

number of cubes defined above. The claim follows. (Note that the functions in Claim 1 are

15
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defined on a subset of domain(Fj;). But because all such functions have an extension in
Gjk, a covering of G;1 also covers these functions defined on restricted domains.)

Proof of Claim 4. First, note that if two functions are less than ~ distant in L°°, their
graphs are less than ~ distant in Hausdorff distance, and vice versa. This implies that a
~v L*-cover of a set of functions corresponds directly to an v Hausdorff-cover of the set of
the functions’ graphs. Hence, in the argument that follows, we can work with functions or
graphs interchangeably.

For k € {1,..., K}, let Q;k be a minimal L> cover of Gj; by /2 balls; specifically, we
assume that Q;.Yk is the set of centers of these balls. For each g, € Q;-Yk, define fjk(u) =
71']7,{1 (u, gjk(u)). For every j, choose one such fji, and define a set M’ = |J;(C;jNrange(fjx;)),
which is a union of manifolds with boundary that have curvature bounded by 1/k. That
is, such an M’ is piecewise smooth (smooth within each cube) but may fail to satisfy
A(M') > k globally. Let A be the collection of M’ constructed this way. There are
N(v/2,G,L*>) elements in this collection.

By construction and Claim 2, for each M € M, there exists an M’ € A such that
H(M,M'") < ~/2. In other words, the set of v/2 Hausdorff balls around the manifolds in
A covers M but the elements of A are not themselves necessarily in M. Let By (A,~/2)
denote the set of all d-manifolds M € M such that H(A, M) < v/2. Let

Ao = {AeA: BH(A,V/Z)HM;AV)}. (24)

For each A € Ap, choose some Ae B (A,v/2) N M. By the triangle inequality, the set
{A: A€ Ay} forms an v Hausdorff-net for M. This proves the claim. [

We are almost ready to compute the entropy. We will need the following lemma.

Lemma 10 Let 0 < v < k—o. There exists a constant K > 0 (depending only on K,k and
o) such that, for any My, My € M(k), H(My, M) <~ implies that |V (M @ o) — V(Ma @
o)| < Kv. Also, for any M € M(k), [V(IM @& (0 +7)) — V(M@ o) < Kr.

Proof Let S; = M; ® o, j =1,2. Then, using (14),

SoCM®(0+7)= | Loty(u (25)
u€e My

Hence, uniformly over M,

V(S < [ wpalLom@dian < [ vo-a(Lo(u)dun, + Ky = V(S + Ky
M1 Ml
since vp_q(B(u,0+47)) < vp_q(B(u,o0))+ K~ for some K > 0 not depending on M; or Ms.

By a symmetric argument, V' (S1) < V(S2) + K. Hence, |V(My @ o) — V(M2 ® o) < K7.
The second statement is proved in a similar way. |

16
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Now we construct a Hellinger bracketing. Let v = €. Let M, = {M,..., My} be a
y-Hausdorff net of manifolds. Thus, by Theorem 9, N = N (e, M, H) < ¢je®(l/ 9", Let

w denote the volume of a sphere of radius o. Let ¢; be the density corresponding to M;.

Define
2¢?

M;j & (0 + €%))

w) = (4100 + 17 )itwe oo e)

and 02 2
ti(y) = <Qj(y) CVOL 6 (o = 62))> I(ye M;® (0 —€%)).

Let B = {(fl,ul), PR (EN,UN)}.

Lemma 11 B is an e-Hellinger bracketing of Q. Hence, H[) (¢, @, h) < C(1/e)d.

Proof Let M € M(k) and let Q@ = Qps be the corresponding distribution. Let g be
the density of . @ is supported on S = M @ o. There exists M; € M, such that
H(M,M;) <. Let y be in S. Then there is a x € M such that ||y — z|| < 0. There is a
2’ € M; such that ||z — 2/|| < €2. Hence, d(y, M;) < o + € and thus y is in the support of
u;. Now, for y € S, u;(y) — q(y) = 2¢2/V(M; & (0 + €*)) > 0. Hence, q(y) < u;(y). By a
similar argument, £;(y) < ¢(y). Thus B is a bracketing. Now

2K €2 2K €? 4K e
Zl(ﬁj,uj) = /UJ‘—/EJ':<1—|- " )—(1— " >: o

Finally, by (11), h(uj,¢;) < \/¢1({j,u;) = Ce. Thus B is a Ce-Hellinger bracketing. [ |

Step 2b. Hellinger Rate.

Lemma 12 Let QV be the mle. Then

nglé% Q" ({h(Q,@) > Confﬁ}) < exp —C’n%d} .

Proof We have shown (Lemma 11) that Hjj(e, Q,h) < C(1/¢)?. Solving the equation
Hj)(en, Q,h) = nep from Theorem 7 we get €, = (1/n)'/(@+2) From Lemma 8, for all Q

Q" ({h(Q,@) > Con_ﬁp < ¢re” " = exp {—Cnﬁd} :

Step 2c. Relating Hellinger Distance and Hausdorff Distance.

Lemma 13 Let ¢ = (k — 0)/nC/(2T(D/2 + 1)). If My, My € M(k) and h(Q1,Q2) < ¢

then
1/D
H(My, M) < [2 <F<D/2+1>> ] .

NG

o=

. (Q1,Q2)

17
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Proof Let b = H(Mj;, Ms) and v = min{x — 0,b}. Let Si,S2 be the supports of Q1
and (2. Because H(M;j, M3) = b, we can find points = € M; and y € My such that
|ly — z|| = b. Note that T,,M; and Ty, Ms. are parallel, otherwise we could move z or y and
increase ||y — z||. It follows that the line segment [z,y] is along a common normal vector
of the two manifolds and we can write y = x 4 bu for some u € L,(u, M). Without loss of
generality, assume that y =  + bu. Let 2/ = z + ou and ' = y + ou. Hence, 2/ € 351,
y' € 05 and ||z’ — ¢'|| = b. Note that 957 and 95, are themselves smooth D-manifolds
with A(9S;) > k— o > 0.
We now make the following three claims:

1. y’ €5, — 5.

2. (ZL‘/,y/] C Sy — 51

3. interior B (m/;y/, %) C S — 51

First, note that 3y’ differs from y along a fiber of My by exactly o, therefore [2/,1y'] C Ss.
Second, because 2’ € 051, there is a neighborhood of ' in [/, y/] that is not contained in
Si1. Hence, if there is a point in S; N [2/,y/] there must be a point 2’ € 95 N [/, /], with
2! # x’/. This implies the existence of two distinct points whose fibers of length less than
k — o cross, which contradicts the fact that A(0S1) > k — o. Claims 1 and 2 follows.

Let B=B (%, %) By construction, B is tangent to 05 at 2’ and tangent to 9Ss at
y', and B contains [/, y']. The ball has radius 7/2 = (1/2) min{x — 0,b} < kK — 0. Because
B intersects Sy — S1, the interior of B cannot intersect either 957 or 9.55. Claim 3 follows
by a similar argument as in the proof of Claim 2. (In particular, if there were a point in
the interior of B that is either in S; or outside Sy, a line segment from (2’ 4+ 3’)/2 to that
point would have to intersect the corresponding boundary, which cannot happen.)

Now V(B) = (v/2)PxP/2/T(D/2 4 1). So

h(Q1,Q2) > fl(Ql,Qz)Z/!Cﬂ—qﬂZ/m lq1 — q2]

S5

= / g1 =Q1(S1NSS) >C.V(SNSS) =Cu(vy/2)PxP2/T(D/2 + 1).
SmS;

Hence,

1/D
v =min{x — 0,b} < [;% (F(D/Ci—i_l)> ] WP (Q1, Q).

If Kk — o < b this implies that h(Q1,Q2) > ¢ which contradicts the assumption that
h(Q1,Q2) < c. Therefore, v = b and the conclusion follows. [ |

Step 2d. Computing The Hausdorff Rate of the Pilot.
_2
Lemma 14 Let a, = (%) bld+2) - For all large n,

C52161% Q" ({H(M, M) > an}) < exp {—C’nﬁd} . (26)
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Proof Follows by combining Lemma 12 and Lemma 13. |

We conclude that, with high probability, the true manifold M is contained in the set
M, = {M e M(x): H(M,M) < an}.

Cover With Slabs

Now we cover the pilot estimator M with (possibly overlapping) slabs. Let 6, =

F = {a1,...,an} C M, such that N = (¢5,)"% = (Cn/logn)¥ @+ and such that
M C U;\le BD(l’j,C(S).

1
(M) 1t follows from part 6 of Lemma 3 that there exists a collection of points

Step 3a. The Fibers of M Cover M Nicely.

Lemma 15 Letb= o +a,. For € M, let Ly(z) = T%Mﬂ Bp(z,b) be a fiber at T of size
b. Let M € M,,. Then:

1. Ifi € M and x € M are such that |z — Z|| < an, then angle(T, M, TzM) < /4.
2. Ly(z)Nn M # 0.

3. Ifx € Ly(x) N M, then ||z — Z| < 2ay,.

4. Forany@ € M, #{Ly(T) N M} = 1.

d.

We have M C U, 77 Lo(2).
Proof 1. Let z and 7 be as given in the statement of the lemma and let § = angle(T, M, TgM)
Suppose that § > w/4. There exists unit vectors u € TgM and v € T, M such that
angle(u,v) = 0. Without loss of generality, we can assume that x = Z. (The extension to
the case x # 7 is straightforward.)

Consider the plane defined by v and v as in Figure 4. We assume, without loss of
generality, that (u+ v)/2 generates the z-axis in this plane and that v lies above the z-axis
and u lies below the z axis. Let £ denote the horizontal line, parallel to the z-axis and lying
2a,, units above the horizontal axis. Hence, u and v each make an angle greater than 7/8
with respect to the z-axis.

Consider the two circles C; and Co tangent to M at x with radius x where C; lies below
v and Cs lies above v. Let w be the point at which C; intersects £. The arclength of C; from
x to w is Ca, for some C' > 1. Let v be the geodesic on M through x with gradient v. The
projection 7 of 7 into the plane must fall between C; and Co. Let y = vy(Ca,) and y be the
projection of y into the plane. .

Now |ly —z|| > ||y — z|| > |lw — Z|| > 2an, > a,. There exists z € M such that
[|Z — y|| < a,. Hence, ||Z — y|| < a, where Z is the projection of Z into the plane. Let
q be the point on the plane with coordinates (a,vC? —1,a,). Thus, ||¢ — Z|| = Cay.
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Figure 4: Figure for the proof of part 1 of Lemma 15.

Note that angle(z — Z,u) is larger than the angle between ¢ — ¥ and the z-axis which is

\/0127_1) = «a > 0. Hence,

arctan (
angle(z — z,u) > angle(z — z,u) > a.

Let 5 be a geodesic on M , parameterized by arclength connecting ¥ and z. Thus
7(0) =z and 5(T) = Z for some T. There exists some 0 < t < T such that +/(t) x z — 7.
So

angle(7/(t),7'(0)) = a > 0.

However, ||Z—Z|| < (C+1) ay, which implies, by part 2 of Lemma 3, that angle(v/(¢),~/(0))

O(y/ar) < o which is a contradiction.

2. For any T € M, the closest point = € M must satisfy ||z — z|| < a,. Let y be the
projection of x onto T5M. Let U = TzM N By(y,a,). Let Cyl = U,cpy Bp(u,3a,) N

<T gM )L. Cyl is a small hyper-cylinder containing y and z, with the former in the center.
M cannot intersect the top or bottom faces of the cylinder. Otherwise, we can find a point
p € M such that angle(TzM,T,M) > arctan(l) = 7/4 contradicting 1. Thus, any path
through x on M must intersect the sides of Cyl. Hence, Ly(z) N M # 0.

3. Let # € M N Ly(Z). Suppose that ||z — Z|| > 2a,. There exists ¢ € M such that
ll¢ — z|| < ayn. Note that ||¢ — Z|| > a,. Now we apply part 5 Lemma 3 with p = Z and
v = z. This implies that ||v — p|| = ||z — Z|| < a2 /k which contradicts the assumption that
||z — || > 2ap,.
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4. Suppose that more than one point of M were in Ly(7). Pick two and call them z; and
x2. By 8, ||z; — z|| < 2a,. It follows that ||z1 — x2|| < 4a, and thus they are O(a,) close
in geodesic distance by part 3 of Lemma 3. Hence, there is a geodesic on M connecting x
and zo that is contained strictly within the Ca, ball. Because zo — x1 lies in Ly(z) and
is consequently orthogonal to TgM , there must exist a point on the geodesic whose angle
with T3 M equals /2, contradicting part 1.

5. Because H(M, M) < ay, we have that M C tube(M, an). Because a, < k, the fibers
Ly(Z) partition tube(M,a,). Hence, each € M must lie on one (and only one) Ly(z). W

Step 3b. Construct slabs that cover M nicely. Let J; = Bp(xj,d,) N M. Define the
slab .
R; = | Lo(z, M). (27)

xz€d;
Lemma 16 The collection of slabs Ry, ..., Ry has the following properties. Let M € M.,,.

2. M N R; is function-like over R;. That is, there exists a function g; : J; — RP=4 such
that M N R; = {gj(x) : x € I;}.

3. For each x € 3j, Ly(z) N M # 0.
4. There exists a linear function £; : 3; — RP~% such that supgey; 195 (z) =4 (2)]| < CH2.
5. Suppren, diam(M N R;) < C6,.

Thus the slabs cover M and M cuts across R; is a function-like way. Moreover, M N R;
is nearly linear.

Proof The first three claims follow immediately from Lemma 15. In particular, g; in
claim 2 is defined by g;j(z) = {M N Ly(x)}. Now we show 4. We can write gj(z) =
gj(zj) + (x — 2;)TVg + 3(x — x;)THess (x — x;) where Hess is the Hessian matrix of g;
evaluated at some point between x and z;. By part 1 of Lemma 3, the largest eigenvalue
of Hess is bounded above by 1/k. Since ||z — x| < ¢d2, the claim follows. Part 5 follows
easily. |

Local Conditional Likelihood

Recall that M,, = {M € M(x): H(M,M) < a,}. Let
Q. ={Qnu: M e M,}. (28)
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Consider a slab R;. For each Q € Q,, define Q; = Q(-|R;) by Q;(4) = QAN R;)/Q(R;).
Note that @; is supported over tube(M,o) N R;. Let Q,; = {Q; : Q € Q,}. Before we
proceed we need to establish the following.

Lemma 17 Let Z;(M) = tube(M, o) N R;. Then there exists co > 0 such that

inf  V(Z;(M)) > codl.
i V(D) 2 b
Proof By Lemma 16, M N R; lies in a slab of size a, orthogonal to J;. Because the angle
between the two manifolds on this set must be no more than 7/4 and because a,, > d,, the
manifold M cannot intersect both the “top” and “bottom” surfaces of the slab. Hence, for
large enough C > 0, J; = Umejj Bp(x,0/C) C Z;. By construction, V(Z;) > V(J;) > ¢d2.
|

Step 4a. The Entropy of Q,, ;.
Lemma 18 (¢, Qn j, h) < c1log(cz/e).

Proof We begin by creating a v Hausdorff net for Q,, ;. To do this, we will parameterize
the support of these distributions. Each @ € Q, ; has support in the collection S, ; =
{M@o)NR;j: M e M,}. We will construct a y-Hausdorff net for S, ;.

Let 7 € M be the center of Jj. Let y1,...,yr be a ciy-net of Ly(z), and let 6; < 65 <
-+ < By < m/2—mn for a small, fixed n > 0 where 6; —6;_; < cpy. Note that r = O(y~(P—4)
and s = O(1/v). For every pair y; and 6;, let M;; be a M € M,, that crosses through y;
with angle(Ty, M, TsM) = 0;. These manifolds comprise a collection of size O((1/v)P~41)
which we will denote by Net(y).

Let M € M,,. Let y be the point where M crosses Ly(x). Let y; be the closest point
in the net to y and let 6; be the closest angle in the net to angle(7, M, Tg]\/\j) Because the
angle between M and M;; is strictly less than 7/4 (part 1 of Lemma 15) and the slab R; has
radius 6y, it follows that H (M, M;;) < C17y + 6,Cay < Cvy. Hence, Net(v) is a y-Hausdorff
net.

Now consider Net(y) with v = €2. For each M;; € Net(v) let ¢;; be the corresponding
density and define u;; and ¢;; by

Cé?
M;; & (0 + €2))

i) = (50 + 7 )it a0+ )

and
62
lij(y) = (Qij(y> ~ VI g(a - 62))> I(y € M; ® (0 — €%)).

Let B = {(EZ],’U,U)}
Let M € M, and let M;; be the element of the net closest to M. It follows easily that
u;j > gy > 4. Thus B is a bracketing. Now,

/uij —lij =1+ 0 — (1 - Ce®) =20,
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Hence, h(u;j, lij) < 1/ [ |uij — 4ij| = vV2Ce. Hence, B is an v2C' — e-bracketing. So,
Hj(€ Qnji h) < (D —d —1)log(c/e), (29)

which proves the lemma. |

Step 4b. Hellinger Rate of the Conditional MLE. Let g be the mle over Q, ; using
the Y¥;’s in R;. Let M be the manifold corresponding to g and let M; = M N R;.

Lemma 19 For all Q, all A > 0 and all large n,

Q" ({h(cz,@ > <C°1n°g”>}> <A

Proof Let N; be the number of observations from the second half of the data that are in
R;. Let pj = E(N;) and define m,, = nFHa, First, we claim that N; > p;/2 = O(m,,) for
all j, except on a set of probability e=on®/ D et 7j = Q(R;). By Lemma 17 and Lemma
4, j > c6¢ for some ¢ > 0. Hence, p; > my,. Note that o2 = Var(N;)/n = m;(1 — ;) < 7.
Let t = pj/2. By Bernstein’s inequality,

2

P(N; < pj/2) = P(Nj — pj < —p1j/2) < exp {_27%02%—275/3

} < exp {—cn2/(2+d)} .

Hence, by the union bound,

P(N; < p/2 for some j) < %exp {—ch/(2+d)} < exp {—c’nz/(2+d)}

since there are N = O(1/6,) slabs. Thus we can assume that there are at least order m,,
observations in each R;.
Since Hj(€, Qn,j, h) < log(C(1/€)), solving the equation H;j(e, Qn j, h) = mn€e* we get

ém > \/Clogmy/my, = (logn/n)%?+d) = 5, From Lemma 8, we have, for all Q € Q,,;,

Q" ({n@.Q) > 6.}) = @" ({h@.Q) > en}) < creezmh <A,

Step 4c. Relating Hausdorff Distance to Hellinger Distance Within a Slab.
Lemma 20 For each My, My € M, H(M1 N Rj,MQ N Rj) < Ch2(Qj1,Qj2).

Proof Let g; and go be defined as in Lemma 16. There exists z € J; such that gi(x) €
My, g2(z) € My and ||gi(z) — g2(x)|| = 7. We claim there exists ' C J; such that
inf,ey |lg1(z) — g2(z)|] > ~/2 and such that V(J') > 6. This follows since g; and gy are
smooth, they both lie in a slab of size a,, around J; and the angle between the tangent of
gj(x) and J; is bounded by 7 /4.
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Create a modified manifold M) such that M} differs from M; over I by a ~/2 shift
orthogonal to J; and such that M} is otherwise equal to M. It follows that ¢; (M, M3) >
(1(My, M) and h(Q1, Qo) > h(Q1, Q)).

Every point in the support of the conditioned distributions can be written as an ordered
pair (x,y) where z € J; and y lies in a d’ ball of radius o. M is shifted a distance of /2 in
the direction orthogonal to J;. As a result, the ¢; distance between M; and M} equals the
integral over C’ of the volume difference between two d’ balls of the same radius that are
shifted by 7/2 relative to each other. This volume 62v. Hence, V (M;N1;)o(MaNd;) > v52.
LetA:{SCGin ql>0,QQ=O},B:{£L’€J]’I Q1>O,QQ>O},C:{ZL‘EJJ‘I g1 =
0,g2 > 0}. At least one of A or B has volume at least v0¢/2. Without loss of generality,
assume that it is A. Then

e = [(a-v?z [Wa-ver= [

C,col
> *gdn'y = cCyy = cC H (M, My).
n

|

Step 4d. The Hausdorff Rate.

Lemma 21 For any A > 0 there exists Cy such that

2
— Cologn 2+d 1
Q" ({H(MﬂRj,Mj) > ( - > }) < A
Proof This follows by combining Lemma 20 and Lemma 19. |

Step 5:| Final Estimator

Now we can combine the estimators from the difference slabs. Let M = U;V: 1 ]\/4\] Recall
that the number of slabs is N = (¢d,)~% = (Cn/logn)¥/ 2+,

Proof of Theorem 2. Choose an A > 2/(2 + d). We have:

N ({H@M) ) <Clngn>}> < Yo ({H@,Mmm > (czgn>}>
<
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Cplogn 2/(2+d) . - . . — .
Let 7, = (=520 . Since M and M are contained in a compact set, H(M, M) is

uniformly bounded above by a constant K. Hence,
EQH(M, M) = Eq[H(M,M)I(H(M,M) > r,)| + Eq[H(M, M)I(H(M, M) < r,)]
< KoQ"(H(M,M) > 1)+,

2/(2+d)
cA+Tn:0<<logn> )
n n

IN

5. A Simple, Consistent Estimator

Here we give a practical, consistent estimator, one that does not converge at the optimal
rate. It is a generalization of the estimator in Genovese et al. (2010) and is similar to the
estimator in Niyogi et al. (2006). Let

S={JBp(Yie) (30)
i=1

and define 95 = 9(S), 5 = ma d(y, 53’) and

Xyes

—

M:{ye§: d(y,é\g)za—%}. (31)

Lemma 22 Let €, = C(logn/n)Y/P in the estimator M. Then

H(M,M) =0 <1°g”> v (32)

n

almost surely for all large n.

Before proving the lemma we need a few definitions. Following Cuevas and Rodriguez-
Casal (2004), we say that a set S is (x, A)-standard if there exist positive numbers y and A
such that

vp(Bp(y,e)NS) > x vp(B(y,e)) forallye S, 0<e<A (33)

We say that S is partly expandable if there exist r > 0 and R > 1 such that H(95,0(S®e)) <
Re for all 0 < e < r. A standard set has no sharp peaks while a partly expandable set has
not deep inlets.

Lemma 23 Ifo < A(M) then S = M @ o is standard with x = 2~ and \ = o and partly
expandable with r = A(M) — o and R = 1.

Proof Let x = 27P. Let y be a point in S and let A(y) < o be its distance from
the boundary 9S. If A(y) > e then Bp(y,e) NS = Bp(y,€) so that vp(Bp(y,e) N S) =
vp(Bp(y,€)) = xvp(Bp(y; €))-
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Suppose that A(y) < e. Let v be a point on the manifold closest to y and let y* be the
point on the segment joining y to v such that ||y — y*|| = ¢/2. The ball A = Bp(y*,€/2)
is contained in both Bp(y,€) and S. Hence, vp(Bp(y,e) NS) > vp(A) > xvp(Bp(y,e€)).
This is true for all € < o, hence S is (x, A)-standard for y = 1/2” and \ = 0.

Now we show that S is partly expandable. By Proposition 1 in Cuevas and Rodriguez-
Casal (2004) it suffices to show that a ball of radius r rolls freely outside S for some 7,
meaning that, for each y € 95, there is an a such that y € B(a,r) C 5S¢, where S¢ is the
complement of S. Let O, be the ball of radius A — o tangent to y such that O, C S¢. Such
a ball exists by virtue of the fact that o < A(M). [ |

Theorem 24 (Cuevas and Rodriguez-Casal (2004)) LetYi,...,Y, be a random sam-
ple from a distribution with support S. Let S be compact, (A, x)-standard and partly ez-
pandable. Let

=B en) (34)
=1

and let DS be the boundary of S. Let e, = C(logn/n)"P with C > (2/(x wp))YP where
wp = V(Bp(0,1)). Then, with probability one,

logn

1/D - logn\ /P
> and H(&S,@S)g()( )

H(S,5)<C < - (35)

n
for all large n. Also, S C S almost surely for all large n.

Proof of Lemma 22. Theorem 24 and Lemma 23 imply that H(S, §) < C(log n/n)l/D
and H(05S, 85) < C(logn/n)/P. 1t follows that & > o — e. First we show that y € M
implies that d(y, M) < 4e. Let y € M. Then d(y,08) > d(y, 65) —€>0—2—¢€>
oc—€e—2e—ec=0—4e. Sod(y,M) =0 —d(y,05) < o — o+ 4e = 4e. Now we show that
M C M. Suppose that y € M. Then,

d(y,érg)Zd(y,ﬁS)—e:cr—GZc?—Qe

sothatyEJ\/i. |

6. Conclusion and Open Questions

We have established that the optimal rate for estimating a smooth manifold in Hausdorff
2
distance is n~ 2+¢. We conclude with some comments and open questions.

1. We have assumed that the noise is perpendicular to the manifold. In current work
we are deriving the minimax rate under the more general assumption that € is drawn
from a general, spherically symmetric distribution. We also allow the distribution
along the manifold to be any smooth density bounded away from 0. The rates are
quite different and the methods for proving the rates are substantially more involved.
Moreover, the rates depends on the behavior of the noise density near the boundary
of its support. We will report on this elsewhere.

26



MINIMAX MANIFOLD ESTIMATION

2. Perhaps the most important open question is to find a computationally tractable
estimator that achieves the optimal rate. It is possible that combining the estimator
in Section 5 with one of the estimators in the computational geometry literature (Dey
(2006)) could work. However, it appears that some modification of such an estimator
is needed. This is a difficult question which we hope to address in the future.

3. It is interesting to note that Niyogi et al. (2006) have a Gaussian noise distribution.
While it is possible to infer the homology of M with Gaussian noise it is not possible to
infer M itself with any accuracy. The reason is that manifold estimation is similar to
(and in fact, more difficult than) nonparametric regression with measurement error.
In that case, it is well known that the fastest possible rates under Gaussian noise
are logarithmic. This highlights an important distinction between estimating the
topological structure of M versus estimating M in Hausdorff distance.

4. The current results take A(M), d and o as known (or at least bounded by known
constants). In practice these must be estimated. We do not know whether there exist
minimax estimators that are adaptive over d, A(M) and o.
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7. Appendix

7.1 Proof of Equation 13

We will use the following two results (see Section 2.4 of Tsybakov (2008)):

h2(P™, Q") = 2 (1 ~ [1 — hQ(];Q)} n) (36)

and

1 R2(P 2
HP/\QH22<1—(2’Q)> . (37)
We have
L 1 R2(P,QY\? 1 R2(P,Q)\ "
I aQrl = g (1- ) - (1- M)
> 1<1_€1(P7Q)>2n
= 2 2

since h?(P, Q) < (1(P, Q).

7.2 Proof of Theorem 6

We define two manifolds My and M; with corresponding distributions Qg and @)1 such that
(i) A(M;) > ki=0,1, (ii) H(My, M1) = ~ and (iii) such that the volume of Sy 0 S; is of
4+1
2

order v2 7", where .S; is the support of Q);.
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We write a generic D-dimensional vector as y = (u,v, z), with u € R v € R, z €
RP=4=1, For each u € R? with |Ju|| < 1, define the disk in R*+!

Do = {(u,()) e Ry e By(0, 1)}
and let

F() = 8 U Bd—&—l((u’U)v’i)

(u,v)€Dg

Now define the following d-dimensional manifold in R”

My = {(Uﬂ)vOD—d—l)i (u,v) € FO}
_ {(u,a(u),OD—d—1) : u € By(0,1+ /@)} U {(U, —a(u),0p_g_1) : u € By(0,1+ ;{)}
where
alu) =14 " if JJul] <1
Sl VR (=12 i< ull <145
The manifold My has no boundary and, by construction, A(My) > k.

Now define a second manifold that coincides with My but has a small perturbation. Let
v € (0,4k) and define

M, = {(u, b(u),0p_g—1): u € By(0,1+ /1)} U {(u, —a(u),0p_g-1): u € By(0,1+ /43)}

7+ /= TlP i lul| < 3v/Fvm = 2
b(u) = 2/4:—\//432—<HUH— dyk — )2 if 2\/dys — 42 < |Ju|] < Vs — A2
a(u) if \/dvk —~2 < ||u|| < V4yk — 2 + k.

Note that A(M;) > & since the perturbation is obtained using portions of spheres of radius
k. In fact

o for ||ul| < %w/47/€ — 2, b(u) is the d + 1-th coordinate of the “upper” portion of the
(d+ 1)-dimensional sphere with radius & centered at (0,---,0,7), hence b(u) satisfies

Hu||2 + (b(u) — ’7)2 = K? with b(u) > ;

o for 1\/4vk—+2 < |lul| £ /4yk —~2, b(u) is the (d + 1)-th coordinate of the
“lower” portion of the (d + 1)-dimensional sphere with radius x centered at (u -
VAvk —¥2/||ul],2k) (note that the center of the sphere differs according to the di-
rection of u), hence b(u) satisfies

w— Ak — A2

|

2
+ (b(u) — 2k)* = K? with b(u) < 2k.
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To summarize, My and M; are both manifolds with no boundary, A(My) > k and
A(Mi) > k. See Figure 5. Now

Ey = My— M, = {(u,a(u),OD_d_l) : u € By(0,v4vk — 72)}
By = Mi—Mo={(ub(w),0p-a1): u€By0,\/Iys—17)}.

R, Ry R,

Figure 5: One section of manifolds My and M;. The common part is dashed, Ej is dotted
and FE7 solid. R; and Ry denote the regions where the different definitions of the

perturbation apply: Ry is ||u|| < 3/4vk — 42 while Ry denotes 3/4yk — 42 <

lul| < VVAvs =2

Note that for each point y € Ey there exists y' € Ej such that ||[y—v/|| < |a(u)—b(u)|
Also, yo = (0,a(0),0) € My has as its closest M; point y; = (0, b(0),0), so that ||yo—y1]|
Hence H(My, M) = H(Ey, E1) = 7.

To find an upper bound for V(Sp0S1), we show that each y = (u, v, z) € S; — Sy satisfies
the following conditions:

<.
:’)/'

(i) w € Ba(0, V4yk —7?);
(i) = € Bp-4-1(0,0);
(iii) k+o0—||z|]| <v<k+7y+0—]2]]

If y = (u, v, z) belongs to Sy and has ||u|| > \/4yk — 72, then there is a point of MyNM;
within distance o, hence y ¢ S1 — Sp. This proves (i). Before proving (ii) and (iii), note

that if u € Bg(0, /4K — 72) then
k=a(u) <b(u) < k+7.
Now, let 3/ = (v/,b(v'),0) € Eq be the point in S; closest to y. We have

d(y, 1) = [ly = y'll < lJu = '] + v = b(u) [ + ||2]| < o
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This gives condition (ii) above ||z|| < ¢ and also
v = b)) < o —||z]]. (38)
Since b(u') < Kk + vy, we obtain
v<bW)+o— [zl <k+y+o -]
which is the right inequality in (iii). Finally,
o < d(y, Mo) < |ly — (u, a(u),0)|| < [v—a(u)| + |||

which implies either v < a(u) — (o — ||z]||) or v > a(u) + (¢ — ||2||). The former inequality
would imply

v <au) = (o —[z[)) = & = (o = [I2]]) < inf b(u) — (o — [|z]])

so that |v — b(u')| > o — ||z|| for all «/, which is in contradiction with (38). Hence we have
v > a(u) + (o — ||z]]) = K+ (6 — ||2]|) that is the left inequality in (iii).
As a consequence,

S1—So © Ba(0, /4y — 72)><{(v,z) ERP: knto—||2]| < v < wtyto—||z|], 2 € BD_d_l(O,J)}

and

V(Sy—51) <C-(V4yk — 72)d - oP—d=1,

Hence, V(Sp — S1) = O('ygﬂ).
With similar arguments one can show that V(S — Sy) = O(’ygﬂ) so that

V(SooSi) = 0(y5th).

It then follows that [ |go — q1] = O(y(4+2)/2),
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