
Stat 217 Week 2 Assignment Spring 2008

Reading

Tuesday 22 Jan

– Probability Explained pages 55–72

– Review Appendices B, S, and F if needed.

Thursday 24 Jan

– None

Homework Due at Noon on Fri 1 Feb

Do the problems starting on the next page. Note that there are only

6 problems to do on this homework. I have included two problems

(“Infinitely Often”, “Run Lengths. . .”) for reference, which I’ve marked

as such, because you will need the ideas contained in those problems.

You should read and think about these two, but you do not need to

turn in a solution.

There are many words in these exercises, but the tasks you have to do

and calculations you need to make are not complex. The real challenge

is setting up the situation so that you know what you need to find.
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Jaggers’s Best

Bet
In the Jaggers story, suppose slots 7, 8, 9, 17, 18, 19, 22, 28, 39

showed an “upward bias,” meaning that across many spins, these slots

came up more often than 1/38th of the time. Define the set J =

{7, 8, 9, 17, 18, 19, 22, 28, 39} and let ps be the proportion of times in

the long run that slot s comes up on repeated spins, as defined on page

21. Assume that

ps >
1

38
+ ε if s ∈ J

ps ≤
1

38
− δ if s 6∈ J ,

where ε > 0 represents the upward bias of the wheel in Jaggers’s favor

and δ > 0 is completely determined by the value of ε. Here, we are

assuming for simplicity that the bias is the same for all slots in J .

(a) Express δ in terms of ε. Recall that
∑

36
s=−1 ps = 1.

(b) Define the random variable BJ to be the payoff of a combined bet

consisting of $1 Straight Plays on slots 7, 8, 9, 17, 18, 19, 22, 28, and 39.

Write BJ explicitly as a function on the outcome space defined in (1.6).

(Note: You can use previously defined random variables in expressing

BJ .)

(c) Using equation (1.7) or (1.8), find E(BJ ) as a function of ε.

Then find the smallest value of ε – the smallest bias in the wheel

– such that Jaggers will make money in the long run, i.e., such that

E(BJ ) > 0. Does your answer make the Jaggers story seem more or

less plausible?

(d) What is Joseph Jaggers optimal bet in this situation among those

allowed by the casino? That is, you need to find a bet B combining

official bets (as BJ does) that maximizes E(B) over all bets on sets of

slots. Support your answer.
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Infinitely OftenTHIS EXERCISE IS FOR REFERENCE. READ THIS AND THINK

ABOUT IT, BUT YOU DO NOT NEED TO TURN IN A SOLUTION.

As in the coin flipping model, we will not be shy about considering

experiments with an infinite sequence of actions. It allows us to model

some complicated situations more easily. When dealing with an infinite

sequence of measurements, there are some events that can only be

described with reference to the entire sequence.

One example is the event that infinitely many events in some se-

quence occurs. Let A1,A2,A3, . . . be a sequence of events. We define

the event {Ai infinitely often}, which we abbreviate {Ai i.o.}, by

{Ai infinitely often} =
∞
⋂

k=1

⋃

i≥k

Ai.

Notice that the index i in {Ai i.o.} is a dummy variable that implicitly

goes over all the indices of the Ais; we could write it equivalently as

{Aj i.o.} or {An i.o.} or whatever.

(a) Interpret the right hand side of this definition in several complete

sentences. Keep in mind what union and intersection mean.

(b) Explain why the following holds: if ω ∈ {Ai i.o.}, then the sequence

of numbers 1Ai
(ω) for i ≥ 1 contains an infinite number of 1s.

If Ij are indicators, we usually shorten the notation for the event

{Ij = 1 i.o.} by writing {Ij i.o.}.

(c) Using what you have learned about the coin flipping experiment,

indicate whether you think the event {Hi i.o.} (i) must occur, (ii) can

occur, (iii) cannot occur, and explain your answer.

3
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Run Lengths and

Borel-Cantelli 0

THIS EXERCISE IS FOR REFERENCE. READ THIS AND THINK

ABOUT IT, BUT YOU DO NOT NEED TO TURN IN A SOLUTION.

Let I1, I2, . . . be indicator random variables and define I = 1{Ij i.o.}

to be the indicator that infinitely many of the Ijs equal 1.

Two important results, called the Borel-Cantelli Lemmas, allow us

to compute E(I) if we know E(Ij) for every j. The first of these is what

I call Borell-Cantelli 0. (The standard name for these are the First

and Second Borel-Cantelli Lemma, which in my view has no mnemonic

value. Why not label the results by their conclusions? I call them Borel-

Cantelli 0 and Borel-Cantelli 1, see below for the latter.) Borell-Cantelli

0 states that if
∞
∑

j=1

E(Ij) < ∞,

then E(I) = 0. As we will see in the next chapter when we discuss

probability, this is a strong conclusion: E(I) = 0 means that {Ij i.o.}

does not occur. The name Borel-Cantelli 0 is intended to remind you

of the zero in the conclusion.

We will use Borel-Cantelli 0 to study the lengths of runs of heads in

a sequence of coin flips, what are often called “run lengths.”

Suppose we have positive integers `1, `2, . . ., and define random vari-

ables Rn to be the indicator that there is a run of heads of length `n

beginning with the nth flip. We can write Rn in terms of the His as

follows:

Rn = HnHn+1 · · ·Hn+`n−1,

where the product equals 1 only if all the Hs listed are 1.

(a) Show that E(Rn) = 2−`n by equation (1.28).

(b) Assume that `n ≥ an + b for constants a > 0 and , b Show that

E

(

1{Rn i.o.}

)

= 0.

(c) Assume that `n ≥ a log2 n+ b for constants a > 1 and b. Show that

E

(

1{Rn i.o.}

)

= 0.

Describe in a sentence or two what you can conclude from this.

Note: You may use the fact that
∑

n 1/na < ∞ when a > 1.

(d) What can you conclude when `n equals a constant b for all n?
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Independent

Indicators

In later Chapters, we will say that two random variables X and Y are

independent if knowing the value of one of them gives you no useful

information for predicting the value of the other. This idea will take

a while to develop fully, but in this exercise I describe a useful special

case – independent indicator random variables.

Two indicator random variables I1 and I2 are independent if

E(I1I2) = E(I1)E(I2).

The intuition for this, which we will develop in the next chapter, relates

to the Multiplication Rule for counting (see page 589 in Appendix B

and equation 1.25).

If we have more than two indicators, the same relationship general-

izes. Indicators I1, . . . , In are independent if

E(I1I2 · · · In) = E(I1)E(I2) · · ·E(In).

(a) Suppose we have two standard six-sided dice, one red and one

blue. We run a random experiment where we roll those two dice once.

Describe a simple outcome space for this experiment and define the

following random variables as functions on that outcome space:

– R is the number of pips (dots) on the upward face of the red die.

– B is the number of pips (dots) on the upward face of the red die.

– S = R + B is the sum of the pips showing on both dice.

For any fixed j, k ∈ [1 . . 6], show that the two indicators 1B=j and

1{R=k} are independent.

Are 1{B=j} and 1{B=k} independent, where j, k ∈ [1 . . 6]? Support

your answer.

Are 1{B=j} and 1{S=`} independent, where j ∈ [1 . . 6] and ` ∈

[2 . . 12]? Support your answer.

(b) In the coin flipping experiment, define random variables Ti = 1−Hi

for i ∈ Z+. This is the indicator that the coin comes up tails on the ith

flip.

For positive integers i, j with i 6= j, compute E(HiHj) via equation

(1.28). Compute E(TiHj) and E(TiTj) as well, though you may not need

to use equation 1.28 in these cases.
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Use these results to determine whether the following pairs of random

variables are independent: (i) Hi and Hj, (ii) Ti and Hj, and (iii) Ti and

Tj. If Hi and Hj are independent, it would say that knowing whether

we got heads on the ith flip tells us nothing about whether we will get

heads on the jth flip.

(c) Give a rough argument to support the claim that for any distinct

i1, . . . , in ∈ Z+, Hi1 , . . . , Hin are independent indicators and similarly

if any H’s are replaced by T s.

Optional: Make this argument formal using equation (1.28).

(d) Consider a pattern HHTH and define

Yn = HnHn+1Tn+2Hn+3,

for integer n ≥ 1. This Yn is an indicator. Describe it in a sentence.

Show that Yn and Yn+1 are not independent but that Yn and Yn+4

are independent. You may assume the claim made in the previous part.

Note: The same basic argument works here for any finite pattern.

5

Monkeys,

Typewriters, and

Borel-Cantelli 1

The claim that a monkey banging randomly on a typewriter will even-

tually produce Hamlet word for word is no mere urban legend. It’s true,

at least given the right assumptions.

Here you will demonstrate this using the second of the Borel-Cantelli

Lemmas referred to in exercise “Run Lengths. . .” above, which I call

Borel-Cantelli 1.

Again let I1, I2, . . . be indicator random variables and define I =

1{Ij i.o.} to be the indicator that infinitely many of the Ijs equal 1.

Borel-Cantelli 1 states that if the indicators Ij are independent (see

Exercise “Independent Indicators”) and if

∞
∑

j=1

E(Ij) = ∞,

then E(I) = 1. This means that the Ijs will certainly be 1 infinitely

often.

Instead of Hamlet, we will use a simpler pattern HHTH, but I promise

you that if you encode Hamlet as a string of 0s and 1s and do this

analysis, you will get the same result.

6
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Using the coin-flipping experiment, let Sn = HnHn+1Tn+2Hn+3, where

Ti = 1 − Hi as above.

Show that E

(

1{Sn i.o.}

)

= 1 and explain what this means in terms of

monkeys and typewriters.

6

Capture-RecaptureSuppose that we want to count the number of fish in a lake, which we

denote by n. (The parameter n here is some fixed but unknown value.)

Consider the following method, called the method of capture-recapture:

A. Capture n1 fish (sampling without replacement), tag them all, and

release the fish back into the lake.

B. Wait a while for the captured fish to mix thoroughly with the un-

captured fish.

C. Capture n2 fish (sampling without replacement) and determine the

number of fish T in the second sample that have tags on them. This

is a random variable.

We take n1 and n2 to be non-random constants that have been specified

before any sampling is performed. Usually in practice, n2 is substan-

tially smaller than n1.

We make the following assumptions about the situation:

A. The population of fish is closed (none enter or leave), so that n is

also constant.

B. In the first sample (capture), all samples of size n1 from the n fish are

equally likely. In particular, every fish is equally likely to be captured

in the first sample.

C. Whether a particular fish was captured in the first sample tells you

nothing about whether it is recaptured in the second sample.

D. In the second sample (recapture), all samples of size n2 from the n

fish are equally likely.

The intuitive motivation for this sampling plan is that the proportion

of tagged fish in the second sample should be approximately equal to

the proportion of fish captured in the first sample. That is, we should

have
T

n2

≈
n1

n
,

where ≈ indicates that the two sides should typically be close to each

other. To the degree that this is a good approximation, this suggests

7
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that

n ≈
n1n2

T
,

and therefore, we use the right-hand side as an estimate of n. Specifi-

cally, we define a random variable N by

N =
n1n2

T
.

The (random) value of N is our estimate of the unknown number n.

Note that T is a random variable, so our estimate N , being a function

of a random variable, is also a random variable.

To determine N gives good estimates of n, we need to assess how

much T varies across the outcome space.

(a) Describe the elementary outcomes for this experiment. (What goes

on each ticket?)

(b) Can the random variable T be negative? Can T be bigger than n1?

Bigger than n2? Why or why not? What values can T take?

(c) What are the biggest and smallest values that N can take? What

values can N take?

(d) How many (see Appendix B pages 586 and 589) elementary out-

comes are contained in the event {T = k} for non-negative integer k.

(First ask yourself what this event means; describe the event in a sen-

tence.)

Hint: How many samples contain k tagged fish and n2 − k untagged

fish?

(e) Assuming that expected values (long-run averages) in this model

equal averages over the outcome space, as we’ve seen in previous ex-

amples, find E(1T=k) for each non-negative integer k.

Aside. The capture-recapture estimator, as well as a few more so-

phisticated methods based on the same idea, are actually used in a

variety of fields. For example, besides being used to estimate mammal

and marine populations, these methods also played an important role

in efforts to adjust the United States Census in 1990 and 2000. The

U.S. Census is a highly complex task and provides a far from perfect

count. People are missed (not counted), or are counted twice, and some-

times non-existent people are included in the count. This might not be

8
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so serious a problem if these mistakes were made uniformly across the

population. However, certain subsets of the population have been un-

dercounted consistently more than others, with at least a resulting loss

of representation and federal funding. This fact motivates attempts

by the Census bureau to adjusts the Census counts using statistical

methods. Capture-recapture estimates play a central role; they are, in

effect, used to guess the number of people in different groups that have

been missed by the Census. The Census corresponds to the first sample

(the capture), and the so-called Post Enumeration Survey (PES) cor-

responds to the second (recapture). The PES is a much smaller survey

carried out shortly after the Census. Adjustment of the Census has

been contested, and a ruling by the Supreme Court and Congressional

opposition makes it unlikely that the adjusted counts will be used in

next Census.

7

Comparing

Random Variable

In the coin flip experiment, define the following random variables:

– Let N be the number of flips required until the pattern THH first

appears on three consecutive flips (including the last three flips).

– Let Q be the pattern HHHHH first appears (including the last five

flips).

– Let R be the length of the longest run of consecutive heads until THH

first appears (and including these three flips).

(a) What values can each of these random variables take? the random

variable N take? Can any of them be infinite?

(b) Give two distinct elementary outcomes that lead to the same value

of N .

(c) Which of the following is true and why: (i) R < N , (ii) R ≥ N ,

(iii) neither R < N nor R ≥ N . Try reasoning ω by ω.

(d) Which of the following is true and why: (i) Q < N , (ii) Q ≥ N ,

(iii) neither Q < N nor Q ≥ N .

(e) If Q and N were algebraic variables (i.e., standing for numbers)

would it be possible for Q < N and Q ≥ N to both be false? Why is

it possible with random variables?

Hint: The relationship Q < N is a relationship between functions.

9
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(f) What do we know about R on the event {Q < N }?

Note: The question is asking about values of R(ω) for ω ∈ {Q < N }.

(g) Describe the random variable min(Q, N) in a sentence.

Note: This is the random variable that maps ω ∈ Ω to min(Q(ω), N(ω)).
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