
A. Specific Aims
Recent technological improvements in functional Magnetic Resonance Imaging (fMRI) are making it pos-
sible to study the brain as more than a collection of volume elements (voxels) but rather as a system
of interacting components. Instead of individual regions, we can study functional networks. Instead of
computing voxels’ individual response curves, we can estimate their collective response to a stimulus. In-
stead of settling for responses averaged over brain regions, we can image fine spatial structure. Such a
system-oriented approach requires advances in both imaging and statistical methodology.

This project consists of two intertwined components. First, we will perform fMRI experiments to
address three questions about the representation of space in the human brain. Second, we will develop
and validate new statistical techniques for the systems-level inferences needed to answer the neuroscientific
questions. These techniques are motivated by and developed for the proposed experimental studies, but
with minor adaptation, they will be broadly applicable to other neuroimaging studies.

Question 1. What is the functional network for visual remapping?
Aim 1. Develop methods to identify and characterize distributed functional networks.
Our remapping experiments to date have identified a number of cortical areas in the human brain that
exhibit remapping. The proposed experiments will test functional interactions between these areas. The
hypothesis is that topographic subregions in each area will become tightly correlated during remapping.
We predict that the particular subregions forming the network will depend on (a) the location of the
stimulus, and (b) the trajectory of the saccade. We will identify functionally coherent regions and estimate
the dependence among these regions by combining neighborhood-discovery methods with a new approach
to causal-state reconstruction for discrete time series. We will begin by discretizing the voxel time series,
estimate the causal states of the resulting process and in turn the mutual information between each pair of
voxel time series. We will adapt recent neighborhood discovery algorithms using the mutual informations
to identify functional networks and to characterize how these networks evolve with time.

Question 2. Does visual cortex contain a representation of eye position?
Aim 2. Develop methods for simultaneously estimating fMRI gain fields.
Neurons in visual cortex respond to stimuli at a particular location on the retina, but their response is
modulated by non-visual signals, such the position of the eyes in the orbit. Single-unit studies in monkeys
have characterized the influence of eye position as gain fields in which the amplitude of visual activity varies
smoothly as a function of eye position. Following on these studies in monkeys, we will test the influence
of eye position on visual activity in the human brain. We will use a novel experimental approach that
presents deterministic “noise” at every location in the visual field. Using sparse regression and stochastic
search techniques, we will estimate the voxels’ functional receptive field – the part of the visual field to
which the voxel responds – simultaneously and then estimate how these fields change in shape, location,
and amplitude of the receptive fields – as a function of eye position and other covariates.

Question 3. Do eye position signals have a fine-scale structure?
Aim 3. Develop adaptive spatial smoothing techniques for high-resolution fMRI.
Columnar organization is a fundamental principal in the mammalian cerebral cortex. The proposed ex-
periments will use very high resolution fMRI to test the fine-scale organization of eye position modulation
in visual cortex. High resolution data combines low signal-to-noise with idiosyncratic noise distributions,
making it especially valuable to borrow inferential strength across voxels with some sort of smoothing. But
critically, our objective is to recover fine-scale spatial structure which tends to be washed out by standard
smoothing techniques, which average over locations with disparate signals. We propose instead to develop
adaptive smoothing techniques that use the data to determine how voxels are to be combined. We predict
substantially improved performance with high-resolution data, and a slightly modified approach should
improve performance for standard fMRI data sets as well.



B. Background and Significance
The new statistical methods in this proposal address basic, recurrent problems in fMRI data analysis,
motivated by issues we have faced in previous fMRI studies. Our three neuroscience questions address
fundamental issues regarding neural mechanisms that underlie sensorimotor transformations in humans.
The questions stem directly from our previous fMRI studies conducted during the previous grant period.
These studies have informed and guided the design of the proposed experiments.

The proposed statistical methods and neuroscience experiments are strongly linked. The methods will
be developed in parallel with the experiments guided by our results at each stage, and our plan includes
data collection explicitly for testing and validating the methods. The experiments draw heavily upon the
new statistical methods both for their design and analysis.

Before giving specific background on our statistical and scientific approaches, we provide some basic
terminology for fMRI and visual neuroscience. An fMRI data set consists of a sequence of three-dimensional
images obtained at regular intervals in an MR scanner while the subject performs a carefully arranged
sequence of behavioral tasks. Each image is a three-dimensional array of volume elements or voxels, usually
arranged in two-dimensional slices. We refer to the time series of measurements at each voxel as the voxel’s
time course or time series. Methods exist (Teo et al., 1997) to map the data from the voxel coordinates
to the surface of the cortex, where all the action is. This mapping is visualized by inflated to the cortical
surface into a sphere. We call these coordinate systems voxel coordinates and cortical surface coordinates,
respectively. Concentrated neural activity gives rise to a blood-flow (hemodynamic) response that can
be detected as small, systematic changes in the time course. We refer to the underlying changes as the
response or the signal and the remaining part of the time course as the noise, which comprises several
sources of variation. A saccade is a rapid eye movement. Saccades are made with high frequency during
visual exploration to bring the high acuity region of the retina, the fovea, onto objects of interest. A visual
receptive field (RF) is the part of space which causes a neuron to fire. The visual system is composed of a
number of different regions or areas that are organized hierarchically. The visual system is crossed so that
neurons in the left hemisphere have receptive fields in the right side of space, referred to as the right visual
field, and vice versa.

B.1. VISUAL REFERENCE FRAMES IN HUMANS

We move our eyes nearly three times every second. Each eye movement causes the image projected onto
the retina to shift. While we perceive a stable image of the world, the retina receives a chaotic barrage of
ever-changing snapshots. How do our brains create from this a stable perception? More than a century ago,
Helmholtz (1866) proposed that the world appears to stay still when the eyes move because the “effort of
will” involved in generating a saccade simultaneously adjusts perception to account for the eye movement.
A simple experiment supports the essence of Helmholtz’s explanation: We see the world move when the
retina is displaced by pressing on the eye but are generally oblivious to retinal shifts from saccades. This
perceptual stability has long been understood to imply that we see not a direct impression of the external
world but a construction derived from an internal representation. It is this internal representation that
is updated, or remapped, during eye movements. Knowledge of the impending eye movement updates
stored visual information so as to maintain an alignment between the external world and its internal
representation.

We have investigated what happens to visual information in the parietal cortex of when subjects
move their eyes. Parietal cortex is a logical place to investigate perceptual stability because it receives
information from both the visual system and the motor systems that control eye movements. Neurons in
parietal cortex encode visual information, and visual stimuli that appear within their receptive fields elicit
strong responses. Parietal RFs are defined with respect to the location of gaze: they are retinotopic and
move with the eyes. When the eyes move so that the RF of a neuron lands on a previously stimulated



location, the neuron fires as though a stimulus were still present, even though the screen is blank (Duhamel
et al., 1992). This response to the trace of a previous stimulus indicates that parietal neurons update the
internal representation of visual space. In Section C.1, we describe our work on remapping in humans from
the previous grant cycle.

Since the initial discovered of remapping in monkey area LIP (Duhamel et al., 1992), the neural
mechanisms that produce remapping have been the topic of intensive investigation. A great deal is now
known about the neural circuitry of remapping in monkeys (Berman and Colby, 2008). Relatively little
is know, however, about remapping in the human brain. Behavioral and neuropsychological experiments
indicate that remapping does occur in humans. Both humans and monkeys have similar abilities in eye
movement tasks that involve remapping, such as the double-step saccade task (Baizer and Bender, 1989;
Hallett and Lightstone, 1976). In both species, damage to the parietal lobe is interferes with accurate task
performance (Heide et al., 1995; Li and Andersen, 2001). Based on this evidence, we hypothesized that
remapping would produce physiological activity in human parietal cortex and that we would be able to
visualize it with fMRI.

Remapping activity is not limited to parietal cortex. Remapping has been observed in the frontal eye
field (FEF), the superior colliculus (SC), and extrastriate visual cortex. Neurons in all these areas have
spatially selective visual and perisaccadic responses, are modulated by spatial attention, and respond to
the stimulus trace in the single-step saccade task (Umeno and Goldberg, 1997; Umeno and Goldberg, 2001;
Walker et al., 1995; Nakamura and Colby, 2002) If remapping is important for perceptual constancy, it
should not be limited to brain regions with attentional and oculomotor functions. Rather, updated spatial
information should reach visual areas that are involved in visual perception. One hypothesis is that updating
occurs in early visual cortex in humans. Two lines of evidence suggests that it does. First, psychophysical
studies have demonstrated that updated visual signals are required to integrate information about object
features across saccades (Prime et al., 2006; Hayhoe et al., 1991). Second, several human fMRI studies
have demonstrated strong top-down effects throughout occipital cortex. Multiple visual areas are activated
in tasks that involve spatial attention (Brefczynski and DeYoe, 1999; Gandhi et al., 1999a; Kastner et al.,
1999; McMains and Somers, 2004; Ress et al., 2000a; Tootell et al., 1998; Yantis et al., 2002; Silver et al.,
2005a). Many of these areas are also modulated by oculomotor signals (Sylvester et al., 2005; DeSouza
et al., 2002). These fMRI studies indicate that visual cortex has access to the corollary discharge signals
necessary for remapping.

B.2. COMMUNITY DISCOVERY METHODS FOR FMRI

Neuroscience distinguish between two sorts of connectivity between neural units, be they neurons, micro-
circuits, or larger aggregations: anatomical connectivity, defined by physical connections such as synpases
and fibers, and functional connectivity, defined through coordinated behavior, and the associated sharing
of dynamical information (Sporns et al., 2002; Friston, 2002a). The two sorts of connectivity do not map
neatly onto each other, and the same system, with fixed anatomy, can support many different patterns of
functional organization in different dynamical or behavioral regimes. This picture, of specialized anatom-
ical regions supporting multiple patterns of functional connectivity, originates in experimental work on
neuronal networks (Selvertson and Moulins, 1987) and in lesion studies (Luria, 1973; Cytowic, 1996), and
qualitatively agrees with brain imaging results (Friston, 2002a).

Quantitatively, functional connectivity has usually been operationalized as the correlation between
simultaneous or slightly lagged activity (David et al., 2004); this is inadequate, because it misses nonlinear
relationships and dependence between temporally-extended patterns of activity. Using mutual information
(Sporns et al., 2002) handles nonlinearities, but still misses temporal extension. Moreover, little attention
has been given to the systemic pattern of functional connectivity, despite its acknowledged importance for
cognitive architecture.



We can solve these problems by using adaptive state-space modeling to capture extended patterns
of activity, using mutual information estimation among states to measure functional connections, and
giving system-level summaries of functional connectivity by adapting new techniques for new techniques
for decomposing networks into nearly-decoupled sub-networks. The first phase, of state-space modeling,
draws on methods of nonlinear prediction (Shalizi and Crutchfield, 2001; Shalizi and Klinkner, 2004); the
second on work on estimating mutual information and functional connectivity measurement (Paninski,
2003; Klinkner et al., 2006); and the third, on new approaches from the statistical mechanics of complex
networks, known as “community discovery” or “module discovery” (Newman and Girvan, 2003; Newman,
2006; Reichardt and Bornholdt, 2004; Reichardt and Bornholdt, 2006a; Shalizi et al., 2007).

The basic idea is as follows (Shalizi et al., 2007). (For concreteness, we speak of voxels, but the method
applies to any sort of dynamical network or spatio-temporal data.) The starting point is the strong notion
of “state” used in physics and dynamics: the state of the system is a variable which determines the
distribution of all present and future observables. In statistical terms, the state is a minimal sufficient
statistic for predicting future observations (Shalizi and Crutchfield, 2001), and it always evolves according
to a homogeneous Markov process (Knight, 1975; Shalizi and Crutchfield, 2001). The observations, in
general non-Markovian, are noisy, nonlinear functions of the the state. In symbols, each voxel i has an
associated time-series of observations,Xi(t). This is generated as a noisy, non-linear function of a Markovian
state process Si(t) for that voxel, which in turn is coupled to the observations:

Xi(t) = Qi(Si(t), εi(t)) (1)
Si(t+ 1) = Ti(Si(t), Xi(t))

where the innovation process εi(t) is a suitable source of noise, unpredictable from the pasts of Xi(t) and
Si(t). The function Q is the measurement function or emission function, effectively giving the distribution of
observations conditional on the state. The latent states Si(t) control the future distribution of observations
via Q, and so the states summarize temporally extended, statistically-reproducible patterns of behavior.
The function T is the transition function, which simultaneously represents the dynamics in the latent state
space, and shows how observing a particular outcome, Xi(t), leads to an updating of the optimal prediction
for the next time step, Si(t + 1). Models of the form (1) differ from conventional hidden Markov models
(HMMs), which would take the form

Xi(t) = Qi(Si(t), εi(t))

Si(t+ 1) = Ti(Si(t), ηi(t))

where η and ε are independent noise sources. This means that the latent state in a conventional HMM is not
a sufficient statistic, since it is not a function of the observable history at all. Except in the special case of
linear-Gaussian HMMs, this leads to great difficulties in estimating the state. Partially-observable Markov
chain models of the form (1) avoid this, with no loss of predictive or representational power (Shalizi and
Crutchfield, 2001; Knight, 1975).

The model (1) allows for dependence between voxels i and j, through the innovations εi and εj. We
measure this dependence by the informational coherence (Klinkner et al., 2006) between the voxels,

ICij ≡
I(Si, Sj)

minH(Si), H(Sj)
(2)

where I(Si, Sj) is the mutual information shared by Si and Sj, and H(Si) is the self-information (Shannon

entropy) of Si. Specifically, I(X, Y ) =
∑
x,y P (X = x, Y = y) log P (X=x,Y=y)

P (X=x)P (Y=y)
, the Kullback divergence be-

tween the joint distribution and the product of the marginals, and thatH(X) = −∑x P (X = x) logP (X = x)



(Cover and Thomas, 1991). Since I(Si, Sj) ≤ minH(Si), H(Sj), this is a symmetric quantity, normalized
to lie between 0 and 1 inclusive. The ICij values for each pair of voxels i, j are then inputs to a module-
discovery procedure (Reichardt and Bornholdt, 2004; Reichardt and Bornholdt, 2006a) which identifies
clusters of voxels whose interconnections are stronger than would be expected in a randomized system
without modular structure, and in fact delivers nested hierarchies of such clusters. (We explain this in
more detail below.) Comparison of discovered modules and their hierarchies across different behavioral
regimes allows us to identify changes in functional connectivity.

A key step is to find and estimate a model of the form (1) for each voxel. When the observations Xi

are discretized, and the number of latent, predictive states is known (or postulated) to be finite, this can
be done through an adaptive, non-parametric model discovery procedure, specifically the CSSR algorithm
introduced in (Shalizi and Klinkner, 2004). This is related to the “state space reconstruction” technique for
nonlinear dynamical systems (Kantz and Schreiber, 1997), but unlike conventional reconstruction, it applies
to stochastic state processes. So far as we know, CSSR is currently the only stochastic state reconstruction
algorithm which has been proved statistically consistent (for conditionally stationary discrete sequences, a
restriction we discuss later).

CSSR rests on the strong notion of “state” introduced above, which implies testable conditional in-
dependence properties. The past of a voxel’s time course up to time t, Xi(−∞ : t), is independent of its
future, Xi(t + 1 : ∞), conditional on the state at t, Si(t): in symbols, Xi(−∞ : t) ⊥ Xi(t + 1 : ∞)|Si(t).
Given a candidate set of states, then, CSSR can check its adequacy by seeing whether all the requisite
conditional independence relations hold in the training data, i.e., cannot be rejected at a level α. When
one or more screening-off relations fail, the corresponding states are sub-divided, and their parts assigned
to new states, or merged with existing states if they have the same predictive distributions. This proce-
dure starts with a single state, corresponding to an IID model, and continues until screening-off has been
checked for all history segments up to some pre-set length L. The state-reconstruction process is a kind of
smoothing of the mapping from time-series histories to predictive, conditional distributions, starting from
a maximally smooth (constant) function, and adaptively allowing more or less roughness in different parts
of the history space.

This sounds similar to the idea of fitting finite-order Markov models up to order L by likelihood-
ratio tests (Billingsley, 1961). A more exact analogy is fitting a variable-length Markov chain (VLMC;
(Bühlmann and Wyner, 1999)), which uses a CART-like tree-growing procedure to build a prediction tree,
with a maximum depth of L. (VLMCs with depth L are formally equivalent to order-L Markov chains, but
more efficiently parameterized.) This impression is misleading. The merging operation in CSSR means that
the prediction structure it learns can contain loops, rather than having to be a tree, and so it can include
infinite-order Markov chains. The class of models which can be learned exactly by CSSR strictly includes
all VLMCs, as well as processes which have only infinite VLMC representations (Shalizi and Klinkner,
2004), laying on them a curse of dimensionality which CSSR escapes.

If the data come from a process of this form with finitely many states, L is large enough to allow for
a transition from every state to every other state, and α→ 0 sufficiently slowly, then the probability that
CSSR reconstructs the wrong state model goes to zero. (For a sketch proof, see (Shalizi and Klinkner,
2004); full details are forthcoming in (Shalizi et al., 2008).) Under these conditions, CSSR thus converges
to the time series’ optimal nonlinear predictor. Work is underway on establishing CSSR’s properties when
these assumptions are violated, particularly when the true number of states is infinite and L is allowed
to grow with the data; simulation studies suggest that, if L grows temperately, CSSR finds a sequence of
increasingly close finite-state approximations to the infinite-state optimal nonlinear predictor. (See D.1.1.)

Dependence between the states of two voxels’ optimal predictors means that their time series share
information which is relevant to their future, so that their behavior is coordinated. Mutual information
quantifies this dependence. Accurate estimation of mutual information, particularly from fairly short time



series, is non-trivial. It is well-known (Victor, 2000) that the standard, plug-in estimate is both biased and
noisy. We currently use the Paninski estimator (Paninski, 2003), which optimizes a bound on the total
estimation error.

Informational coherence is not the only possible way of measuring behavioral coordination, or functional
connectivity. However, it has a number of advantages over others (Klinkner et al., 2006). Unlike measures
of strict synchronization, which insist on voxels doing exactly the same thing at exactly the same time, it
accommodates phase lags, phase locking, chaotic synchronization, etc., in a straightforward and uniform
way. Unlike cross-covariance or spectral coherence, it easily handles nonlinear dependencies, and does not
require the choice of a particular lag (or frequency, for coherence), because the predictive states summarize
the entire relevant portion of the history. Generalized synchrony measures (Quian Quiroga et al., 2002)
can handle nonlinear relationships among states, but inappropriately assume determinism. Finally, mutual
information among the observables, I[Xi;Xj], can handle nonlinear, stochastic dependencies, but suffers,
especially in neural systems, because what is really of interest are coordinated patterns of behavior over
time, rather than coordinated instantaneous actions. Because each predictive state corresponds to a unique
statistical pattern of behavior, mutual information among these states is the most natural way to capture
functional connectivity. One could as an alternative employ spatio-temporal autoregressive models and
impose a sparsity constraint to obtain a network structure (cf. D.2.1); however, it is not at all clear that
sparsity is an appropriate constraint, or that it can accommodate long-range functional connectivity.

Having obtained the ICij matrix, the final step is the use of the Reichardt-Bornholdt community
discovery algorithm (Reichardt and Bornholdt, 2004; Reichardt and Bornholdt, 2006a), which assigns
voxels to communities (clusters) in such a way that within-community links are stronger than would
be expected under randomization, and between-community links are weaker. Specifically, the objective
function to be maximized is Hγ(~σ) =

∑
i 6=j (ICij − γKiKj/M)δ(σi, σj) where ~σ is the discrete vector

giving the community assignments of all voxels, ICij is the informational coherence between voxels i and
j, Ki is the average coherence of voxel i with all other voxels, M is a normalizing factor, and γ ≥ 0 is a
scale factor. (The optimization is currently done by simulated annealing.) When γ = 1, intra-community
links must be just stronger than expected under randomization. As γ shrinks, communities merge into each
other, and the coherence of each community weakens. As γ grows, communities split, and each community
becomes more coherent — more functionally connected — internally.

The results of our analyses, then, are not just the matrix of informational coherences ICij measuring
functional connectivity between voxels, but also a division of the brain into a hierarchically-organized
collection of functionally-coherent communities, which need not be geometrically contiguous. This over-all
pattern of functional organization can be compared across experimental conditions.

B.3. HIGH RESOLUTION IMAGING IN HUMANS

It is well-known that neural function in the mammalian neocortex is organized into patches, or columns,
approximately 0.5–1 mm across, and that these columns represent one of the intrinsic length scales of
cortical architecture. This columnar organization has been characterized in detail for some sensory brain
areas (e.g. orientation preference and ocular dominance in primary visual cortex) (Wiesel et al., 1974;
LeVay et al., 1975; Kennedy et al., 1976; Horton and Hedley-Whyte, 1984; Horton et al., 1990) and it is
hypothesized that analogous columns are present in higher brain areas. There have been several attempts
to use fMRI to resolve the columnar architecture of primary visual cortex (V1) in anesthetized cats (Duong
et al., 2000; Kim et al., 2000) and in humans (Menon et al., 1997; Dechent and Frahm, 2000; Goodyear
and Menon, 2001; Cheng et al., 2001). These groups acquired data with sub-millimeter in-plane spatial
resolution using 2D pulse sequences, typically multi-shot EPI sequences such as the one developed by Kim
et al. (1996). Historically, the slice thickness of 2D sequences used in experiments such as these was rather
large (2–3 mm), and routine studies of the folded cortex at the scale of the columnar architecture were



difficult. For example, in their work on mapping of ocular dominance columns in human V1, Cheng et al.
(2001) carefully positioned the slices parallel to a flat segment of the calcarine sulcus.

Improvements in MR scanner hardware have made it possible to reduce the slice thickness in 2D
experiments, and several groups have begun to use 1 mm thick slices in neuroscience experiments. For
example, Grill-Spector (2006) acquired data at high resolution (1 mm × 1 mm × 1 mm), from a region in
ventral cortex thought to be important in face perception (FFA), using a 2D multi-shot spiral sequence.
They showed that at conventional fMRI resolution (3 mm isotropic) the FFA appears to be a homogeneous
structure which is highly selective for faces, whereas, at high resolution (1 mm isotropic), the FFA appears
to be a heterogeneous structure consisting of localized subregions which are highly selective for faces
intermixed with localized subregions which are highly selective for different object categories. This study
is an early indication that high resolution fMRI will be an important tool for understanding the fine scale
organization of higher brain areas.

Time resolution is an important consideration in the design of fMRI acquisition methods. As the
spatial resolution increases, it is desirable to maintain a time resolution of at most a few seconds. It has
been difficult to maintain a reasonably high temporal sampling rate, and in the above mentioned ocular
dominance column studies, the field of view in the z-direction was sacrificed in order to maintain sufficient
temporal resolution. Specifically, Cheng et al. (2001) acquired 3 slices every 10 s. A reduction of the
in-plane field of view would reduce the acquisition time, allowing one to acquire more slices in the same
total time, thereby increasing the field of view in the z-direction. Grill-Spector (2006) used a small surface
coil with a focal region of sensitivity to reduce the in-plane field of view to 14 cm × 14 cm, and were
able to acquire 12 slices every 2 s (6 Hz). Pfeuffer et al. (2002) demonstrated an alternate field of view
reduction method with similar data acquisition speed based on outer-volume suppression. They acquired 1
slice every 250 ms (4 Hz), with very high in-plane resolution (0.5 mm × 0.5 mm). The temporal sampling
rate was maintained by reducing the in-plane field of view by a factor of four by suppressing the signal
from outside the region of interest using a series of RF pulses. Pfeuffer et al. (2002) performed their
experiment at 7 T, and at the time, they did not have access to a volume transmit coil with a uniform B1

excitation field profile, consequently they were forced to adopt a rather complicated suppression scheme
(BISTRO). With a volume coil transmitter, the B1 field is much more homogeneous and simpler outer-
volume suppression schemes can be used. At 3 T, volume transmit/surface receive coil configurations are
common, and continued advances in coil design will lead to similar configurations for higher field systems.

C. Progress Report and Preliminary Results
C.1. PROGRESS REPORT

Work during the previous grant period produced ATTN invited presentations and ATTN refereed publications in
top journals in both statistics and neuroscience. Here we review a selected set of accomplishments from this work.

Adaptive Confidence Bands (Genovese and Wasserman 2007). In this paper, we show that for a variety of
commonly used nonparametric regression models, it is impossible to construct confidence bands that adapt to the
data. That is, we would like a confidence band procedure to produce narrower bands automatically when the truth
is smooth and wider bands when it is rough, just as adaptive estimators produce smoother estimates when the
truth is smooth and rougher estimators when it is rough. But this turns out to be impossible; in fact, the width
of the bands is driven completely by the roughest functions consistent with the assumptions. We show that it is
possible, however, to construct adaptive confidence bands if we extend the notion of coverage to include selected
surrogates for the unnknown function. The paper develops a procedure that is optimal to within a small constant
factor. The result for smoothing is that we can make rigorous adaptive inferences for functions using standard
techniques with a small dilation in the confidence bands. Put another way: by slightly dilating the bands, we can
ignore bias and still get correct inferences. The implication for fMRI is that we can construct sharp bands for the
hemodynamic response that enable us to make a variety of useful inferences.



Exceedance Control for False Discovery Control (Genovese and Wasserman 2006b). Many methods for multiple
testing problems have been developed to control the False Discovery Rate (FDR), the expected proportion of
falsely rejected null hypotheses among all rejections. For much the same reason that one does not often use 50%
confidence intervals, it can be valuable to control not the mean of this false discovery proportion (FDP), but rather
the probability that the FDP exceeds a specified bound. We call this False Discovery Exceedance (FDX) control.
(The FDX at level c is the probability that the proportion of false discoveries exceeds c.) This paper constructs a
general class of methods for FDX control based on inverting tests of uniformity. The new method, which we call
adaptive FDX control, maintains the same uniform control on FDX while attaining substantially higher power. It
also remains valid under arbitrary dependence among test statistics, which is a significant advance. In comparisons
with competing methods for handling dependence while controlling FDX, our method performed best. The method
also produces a confidence envelope for the FDP as a function of rejection threshold, which is a useful tool for
building more complicated testing procedures.

FDR Control with P-value Weighting (Genovese, Roeder, and Wasserman 2006). This papers shows how prior
information can be used to improve the power of False Discovery controlling procedures procedurs in multiple
testing problems. We show how to use p-value weighting to improve the power of FDR and False Discovery
Exceedance controlling methods. The power improvement is substantial when the weights are associated with the
correct pattern of alternatives but power does not reduce much even when the weights are poorly chosen.

Scan Clustering: A False Discovery Approach (Perone Pacifico, Genovese et al. 2006). This paper puts the
problem of testing in spatial data such as fMRI into a scan-clustering framework. For example, fMRI data tend
to be spatially smoothed at fixed bandwidth, with little attention to the bias-variance tradeoff this produces.
Bulding on our earlier work (Perone Pacifico et al. 2004), consider smoothing at multiple scales simulaneously
and construct statistically efficient procedures for detecting activity based on combining information across scales.
The procedure has strong theoretical performance and can be efficiently computed. In our studies, the technique
successfully improved resolution of the active sets.

A Stochastic Process Approach to FDR Control (Genovese and Wasserman 2006a). This paper extends the
theory of false discovery rates (FDR) pioneered by Benjamini and Hochberg (1995). We develop a framework in
which the False Discovery Proportion (FDP) – the number of false rejections divided by the number of rejections – is
treated as a stochastic process. After obtaining the limiting distribution of the process, we demonstrate the validity
of a class of procedures for controlling the False Discovery Rate (the expected FDP) and construct a confidence
envelope for the whole FDP process. From these envelopes we derive confidence thresholds, for controlling the
quantiles of the distribution of the FDP as well as controlling the number of false discoveries. We also investigate
methods for estimating the p-value distribution.

False Discovery Control for Random Fields (Perone Pacifico, Genovese et al. 2004). This paper extends False
Discovery Rate control to random fields, where there are uncountably many hypothesis tests. We show how to
control various false discovery criteria and construct confidence envelopes for the proportion of false discoveries as
a function of threshold. Of particular note, we develop a method for finding regions in the field’s domain where
there is a significant signal while controlling either the proportion of area or the proportion of clusters in which
false rejections occur. This is the first work to extend the notion of error control to regions rather than locations
(i.e., voxels).

Remapping in Human Parietal Cortex (Merriam et al., 2003). Our first question was whether we would
observe activity in human parietal cortex during the same remapping task that elicits activity in monkey parietal
cortex. We have developed an experimental approach for studying remapping in humans that is based on the
classic single-step task used in monkeys (Figure 1). In our version of the task, an intervening eye movement brings
the recently-stimulated screen location into the opposite hemifield. We overcame the temporal resolution limits
of fMRI by slowing the task down. Rather than flash the stimulus for 50 ms, as in the version of the task used
in monkeys, the stimulus appears and remains on the screen for 1,000 ms prior to the saccade. This enabled us
to temporally dissociate the visual response, which is time-locked to stimulus onset, from the remapped response,
which occurs 1,000 ms later, in conjunction with the saccade (Figure 1C).We found that an area in the medial portion of the intraparietal sulcus exhibits strong responses to the
remapped stimulus trace (Figure 2A). The time course of activity from this region indicates that the response
occurs in conjunction with the saccade, 1,000 ms after the onset of the stimulus, as we would expect during
remapping (Figure 2B). Finally, equivalent activity was not observed in two conditions that controlled for purely
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Figure 1. fMRI version of the single-step task. A, Subjects fix-
ate FP1, located 8◦. After 1, 000 ± 200 ms, a stimulus (full circle)
appears in the left visual field 1 s, activating contralateral (right)
hemisphere. The stimulus is then extinguished and a tone cues the
subject to make a leftward eye movement to FP2. This saccade
brings the screen location of the now-extinguished stimulus (empty
circle) into the right visual field. After variable period, a second
tone instructs the subject to make a return saccade. B, Predicted
pattern of brain activation. The stimulus appears in the left visual
field, activating the right hemisphere (blue circle). Remapping of
the stimulus trace would cause activation to shift from the right to
the left hemisphere (red hatched circle) with the saccade despite

the fact that no physical stimulus ever appeared in the right visual field. C, Predicted time course of activation. Shaded re-
gion indicates time that the stimulus is on, vertical line at 1 s indicates time of the auditory cue to make an eye movement.
Activation in right hemisphere, due to the stimulus, was expected to follow the standard hemodynamic time course (blue
curve). Activation in the left hemisphere, due to remapped stimulus trace (red curve), was expected to have a similar time
course but be shifted by 1 s because the cue to make an eye movement occurs 1 s after stimulus onset. We also expected
the remapped response to be smaller in amplitude than the visual response. From Merriam, Genovese, & Colby (2003).

visual and motor components of the task, indicating that both a stimulus and a saccade are required to produce
remapping.
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Figure 2. Remapping in human parietal cortex. A, Ac-
tivation from an example subject in the single-step task
on trials in which a LVF stimulus was followed by a
leftward saccade, resulting in widespread activation in
contralateral (right) hemisphere. Activation was also ob-
served in ipsilateral (left) parietal lobe, indicating that
the visually-evoked activation was remapped in conjunc-
tion with the eye movement. B, Time course of activa-
tion evoked by visual (blue) and remapped responses
(red). From Merriam, Genovese, & Colby, 2003.

Strength of Remapping is Graded in Visual Cortex (Merriam et al., 2007). In monkeys, remapping has been
observed in the frontal eye field (FEF), the superior colliculus (SC), and in extrastriate visual cortex. Neurons in
all these areas have spatially selective visual and perisaccadic responses, are modulated by spatial attention, and
respond to the stimulus trace in the single-step saccade task (Umeno and Goldberg, 1997, 2001; Walker et al.,
1995; Nakaumra and Colby, 2002) . If remapping is important for perceptual constancy, remapping should not be
limited to brain regions with attentional and oculomotor functions. Rather, updated spatial information should
reach cortical areas involved in visual perception.

We tested the role of extrastriate visual cortex in remapping (Merriam et al., 2007). We first identified the
boundaries of several occipital lobe visual areas using standard retinotopic mapping techniques. We then tested
subjects while they performed the same single-step saccade task that we had used to investigate remapping
in human parietal cortex. We analyzed the fMRI time series data with a nonlinear, fully Bayesian hierarchical
statistical model developed in the previous grant cycle. We found that the strength of remapping was roughly
monotonic with position in the visual hierarchy: remapped responses were largest in areas V3A and hV4 and
smallest in V1 and V2 (Figure 3). This demonstrates that remapping is widely distributed. Furthermore, updated
visual representations are present in primary sensory areas that are directly linked to visual perception.

Visual Cortex is Retinotopic, Not Spatiotopic (Gardner et al., 2008). Remapping provides one mechanism
by which the visual system may compute the location of stimuli from an ever-changing retinal image (Merriam
and Colby, 2005). A second mechanism would be to construct an explicit representation in external, spatiotopic
coordinates that is invariant to changes in eye position (Colby, 1998; Snyder et al., 1998; Duhamel et al., 1998;
Bremmer et al., 2001; Avillac et al., 2005). It was recently reported that human cortical area MT represents stimuli
in a spatiotopic reference frame (d’Avossa et al., 2007). We used visuotopic mapping with fMRI to define 12 human
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Figure 3. Proportion of in which responses reached a posterior
probability threshold of q < 0.95. Light gray bars, responses to
ipsilateral visual stimuli during stimulus-only fixation task (stim).
Medium gray bars, responses to saccades in the absence of salient
visual stimuli (sac). Dark gray bars, responses in the single-step
task when a visual stimulus appears in the ipsilateral visual field
and is followed by an ipsiversive saccade (sstep). The prevalence of
voxels activated by the single-step task increases with position in
the visual hierarchy. From Merriam, Genovese, & Colby, 2007.

visual cortical areas, and then determined whether the reference frame in each area was spatiotopic or retinotopic.
We scanned subjects on three different eye fixation conditions (−10◦, 0◦,+10◦, relative to center). Visual stimuli,
consisting of black and white moving dots, appeared for 3 s, in a pseudorandomized order, at each of four screen
locations (−15◦,−5◦,+5◦,+15◦, from the center of the screen). Between each stimulus presentation the screen was
gray for 3–9 s.
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Figure 4. Retinotopic responses from left hemisphere MT of
a representative subject. Mean responses were computed for
all voxels in which there was a significant visual response in at
least one of three fixation conditions (p < 0.01, permutation
test). Columns 1–3 plot the responses for fixation conditions at
−10◦, 0◦, or +10◦, relative to the center, respectively. Purple,
red, orange, and blue traces show the responses to visual stim-
uli presented at −15◦, −5◦, +5◦, and +15◦ from the center of
the screen, respectively (see inset). From Gardner, Merriam,
Movshon, & Heeger, 2008.

We found that all 12 areas, including MT, represented stimuli in a retinotopic reference frame. Example
responses are shown from left hemisphere MT from a single subject (Figure 4). When the eyes were fixated to the
left of the screen, the three stimuli located to the right of fixation elicited strong responses (left panel); during
central fixation, the two stimuli to the right of fixation elicited strong responses (center panel). When the eyes were
to the right of the screen, only the one stimulus to the right of fixation elicited a response (right panel). Although
there were patches of cortex in and around these visual areas that were ostensibly spatiotopic, responding to the
same set of stimulus locations regardless of eye position, none of these patches exhibited reliable stimulus-evoked
responses. We concluded that the early, visuotopically organized visual cortical areas in the human brain represent
stimuli in a retinotopic reference frame.

C.2. PRELIMINARY RESULTS

C.2.1. Remapping Increases Inter-Area Interactions (Aim 1)

The spatial transformation that underlies remapping depends on two signals. The system requires infor-
mation about (1) the size and direction of the eye movement, and (2) the retinal coordinates of the visual
stimuli that will be remapped (Quaia et al., 1998). How are these two sources of information integrated?
One possibility is that information is transmitted from visual and oculomotor areas to parietal cortex via
long-range cortico-coritcal projections. This implies that communication between cortical regions increases
during remapping. Interactions between cortical regions during remapping are difficult to test with neuro-
physiological methods because of the challenges associated with recording neural activity from multiple,
topographically-aligned regions simultaneously.

fMRI provides an ideal methodology for testing this prediction, however. We can measure brain activity
from the entire cortex simultaneously. We can also clearly identify topographically aligned regions in
occipital, parietal, and frontal cortex. We have begun to investigate functional interactions between these
areas during remapping (Figure 5). We first divided trials of the single-step task into two groups: (1) trials
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Figure 5. Inter-area correlations increase during remap-
ping. Correlation between IPS and V3A in the single-
step task on trials that involve remapping (A), and
trials that do not (B). Each dot is a time point taken
from the fMRI time series after removing activity driven
by the stimulus and the saccade. C, Matrix of corre-
lation differences between trials of the single-step task
that involve remapping and those that do not.

in which the stimulus stimulus was remapped into the contralateral visual field, and (2) trials in which it
was remapped away from the contralateral visual field. We have previously shown that remapped occurs
in the first group of trials, but not in the second. We then computed a series of correlations between every
pair of ROIs. Finally, for each ROI pair, we took the difference in correlation between the two trial types.

The critical question is whether remapping has an impact on the pattern of correlations between visual
areas. Our preliminary analysis indicates that it does. Remapping enhanced correlation between IPS and
each of the other visual areas, except for in area V1, where we know remapping to be weak. Importantly,
this effect is highly specific to interactions with IPS: remapping does not have a significant effect on
correlations between the other visual areas. This observation is consistent with the notion that parietal
cortex depends on information from a wide range of cortical areas.

C.2.2. Eye Position Modulates the Gain of Visual Activity (Aim 2)

Our studies of remapping highlight one mechanism for the dynamic integration of eye movement and
visual signals. Computational models have described an alternative mechanism by which the brain may
integrate these signals (Avillac et al., 2005; Pouget and Sejnowski, 1997). According to this model, static
eye position modulates the response gain of visual neurons, without affecting their spatial selectivity.
This model is based multiplicative interactions between visual and oculomotor signals, and is conceptually
similar to computational theories of visual attention (ATTN refs). While eye position “gain fields” have
been extensively studied in at the single-unit level in monkeys (Boussaoud and Bremmer, 1999; Andersen
et al., 1990; Snyder, 2000), they have not been studied systematically in humans using fMRI.
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Figure 6. Eye position modulates the amplitude
of visual responses. Time series plots show the
cortical response in a single voxel for each of the
eight eye positions tested. Thin gray lines and
dots indicate the fMRI data averaged over 20
trials. Thick black lines indicate the best fitting
sinusoidal model (amplitude and phase) for that
response. For this voxel, the response was largest
when the subject fixated up and to the right and
was smallest when the subject fixated down and
to the left. Center plot illustrates the plane that
best fits the eight response amplitudes. From Mer-
riam, Gardner, Movshon, & Heeger (2008).

C.2.3. High-Resolution fMRI Reveals Fine Spatial Structure in Cortical Activity (Aim 3)

In Aim 3, we propose new methods for spatially smoothing high-resolution data using adaptive smooth
techniques. Here, we describe preliminary data demonstrating the feasibility of collecting fMRI data at a
resolution that is much higher than is conventionally used. We have developed a zoomed, 3D, multi-shot
EPI pulse sequence. We are currently preparing a manuscript on the technical details of the method. Here,
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Figure 7. Cortical responses to checkerboard stimuli measured with fMRI at high-resolution. A, Flickering checkerboard
stimulus consisted of a set of rings and and anti-rings, alternating according to an ABAB block design at a rate of
1/24 s. B, Responses to the ring stimuli sampled at a voxel resolution of 700 µm isotropic. Statistical maps were over-
laid on a standard anatomical scan. Inset indicates the limited field of view of the slice prescription. C, Statistical map
overlaid on a computationally flatted representation of the cortical ribbon. D, Amplitude spectrum for the entire region
activated by the ring stimulus.

we provide preliminary functional data demonstrating that this highly specialized pulse sequence enables
us to detect functional activation at the desired resolution.

D. Research Design and Methods
In this section, we describe in detail our plan for research, both methodological and empirical. In each
subsection, we begin by describing the new statistical methodology and follow with a detailed discussion
of our proposed experiments. Our aims and questions, methods and experiments are closely linked, and we
highlight those links throughout, showing how the methods are useful for analyzing the experiments and
how the experiments motivate the need for the methods.

A theme that connects the statistical methods we propose is identifying regions within which the signal
exhibits a shared structure. Whereas the voxel grid is an artificial framework imposed by data collection
and of little intrinsic interest, it is such regions that are the true target of inference in fMRI. The problem
of identifying such regions is an important one in many applications, in neuroimaging and beyond. In
Aim 1, we identify a hierarchy of regions where the signals exhibit functional dependence and show how
to statistically detect changes in those regions across time or condition. In Aim 2, we identify regions
called response fields that show a similar response to a distributed stimulus. In Aim 3, we identify regions
over which the signals can be combined to denoise the data while reducing the structural bias of current
smoothing methods.

Neurophysiological studies in monkeys over the last two decades have supported the idea that the
brain locates visual stimuli by combining information about the position of stimulus excitation on the
retina and the position of the eyes relative to the head. But relatively little is known about how these two
signals are combined in the human brain. For Question 1, we will extend on our previous studies of visual
remapping by studying how functional networks in the brain change when subjects make eye movements.
For Question 2, we will investigate cortical representations of visual stimuli when the eyes are held fixed
at different locations in the visual field. And for Question 3, we will exploit a new technique for very high
resolution fMRI to test for fine-scale structure of eye position signals in early visual cortex.

D.1. QUESTION 1 / SPECIFIC AIM 1

One of the chief advantages of fMRI over single-unit physiology is the ability to sample activity in multiple
regions simultaneously, the field currently lacks adequate statistical tools for making inferences about
coordinated and widespread patterns of brain activity. In this Aim, we propose rigorous and flexible
statistical methods that can characterize regions in which the time courses exhibit related patterns activity
and can detect changes in these regions over time or across conditions. The result is a new way to assess
functional connectivity that is more powerful than existing techniques. Remapping is a good test bed for



these developments because computational models of remapping posit interactions among regions in a
broad, interconnected network and yet existing studies of visual remapping in both monkeys and humans
have focused on studying individual brain regions. The goal of our experiment is to characterize interactions
between cortical areas during remapping. Our overarching hypothesis is that a functional network involving
parietal cortex and topographically aligned visual areas becomes activated during remapping. We will use
the new methods and the data from our experiments to test specific predictions about activity in this
network.

D.1.1. Methodology: Characterizing Distributed Functional Networks

As described in B.3, our proposed methodology for quantifying functional connectivity and discovering
functional modules has three stages (Shalizi et al., 2007):

1. Discretize the time course for each voxel, Xi(t), and use CSSR to reconstruct a predictive state-space
model for that time series, producing a series of states Si(t).

2. Estimate the mutual information I(Si, Sj) between each pair of voxels, normalizing to give information
coherence ICij.

3. Maximize the objective function Hγ(~σ) =
∑
i 6=j (ICij − γKiKj/M)δ(σi, σj), where ~σ assigns voxel i

to community σi, Ki is the averaged coherence of voxel i with all other voxels, M is a normalization
factor, and γ ∈ [0,∞) controls the hierarchical scale of the division into communities. As γ → 0, we
obtain fewer, large, less coherent modules, rooted in the limit γ = 0 in a single module embracing all
voxels. As γ →∞, these modules sub-divide into smaller, more numerous, and more interally coherent
sub-modules. Both the organization at a particular γ level and the hierarchy of levels are of interest.

Each of these three stages will be further developed.
State-space Reconstruction: Consistency and Convergence. As mentioned in B.3, CSSR is pointwise

consistent when the data-generating process has a finite number of predictive states (and some weak
regularity conditions hold) (Shalizi and Klinkner, 2004). Work is already under way, with L. Kontorovich,
on extending this to uniform consistency over classes of processes parameterized by a measure of the
amount of memory (in bits) required for prediction, using recent results extending measure-concentration
inequalities to hidden Markov processes (Kontorovich, 2007; Kontorovich and Ramanan, 2007). A second
pressing issue is the behavior of CSSR when the true number of predictive states is infinite; here simulation
studies show the algorithm learning a series of increasing complex and increasingly accurate finite-state
approximations. We believe this observation can be formalized using techniques developed in ergodic theory
for studying the weak convergence of mixing processes, and their representation as transformations of IID
noise sources (Ornstein and Weiss, 1990; Gray, 1988).

State-Space Reconstruction: Multivariate Methods for Multiple Voxels. Having used informational co-
herence to establish that voxels’ dynamics are coupled, it is natural to want to jointly model the linked
processes. Symbolically, the model would partition the whole set of voxels into m non-overlapping sets
I1, I2, . . . Im, and then

∀i ∈ Ia, Xi(t) = Qi(Sa(t), εa(t))

Sa(t+ 1) = Ta(Sa(t), XIa(t))

with innovations εa(t) coming from a noise process unpredictable from the histories of Sa(t) or XIa(t). That
is, each group of voxels has its own Markovian state process, which generates a multivariate time series for
the corresponding voxels. Using models of this form, rather than that of (1), has important benefits, in the
form of more accurate estimates of dependence and information flow, improved prediction and filtering,
and a better representation of the underlying information-processing taking place in the brain (Shalizi and



Crutchfield, 2001; Haslinger et al., 2008). If the interaction topology of a spatio-temporal system is known,
then there are techniques for “composing” the predictive state models of multiple voxels into a single joint
predictive-state model (Shalizi, 2003; Shalizi et al., 2006). However, we are interested in, precisely, the cases
where the interaction topology is unknown. Alternatively, we could try to fit a single global predictive-state
model to all the voxels at once. Non-negative factorizations, or near-factorizations, of its state space would
then indicate the functional modules of the system. Unfortunately, reconstructing a global state space from
a high-dimensional multivariate time series faces a serious curse of dimensionality.

To get the advantages of a multivariate model in a tractable form, we propose to develop a one-step
refinement procedure, where in the first stage a separate state space is reconstructed for each voxel
independently, informational coherence is assessed pairwise, and clusters of strongly-dependent voxels are
identified. We will then reconstruct a joint state-space for each cluster. This should improve prediction
and filtering for the cluster, as well as giving a refined estimate of the total functional connectivity within
the cluster, namely the difference between the sum of the complexities for the marginal state spaces and
the complexity of the joint state space. We will investigate the sensitivity of this procedure to different
clustering methods (giving special emphasis to clusters found via community discovery), and establish its
reliability via simulation studies.

State-space Reconstruction: Discretization. A final issue for state-space reconstruction is that the cur-
rent approach requires discrete-valued time series. Currently, we discretize by taking a local polynomial fit
to the time course for each voxel, estimating the derivative, and binning the derivatives by quintiles. On
the practical side, we will examine the sensitivity of our results on functional connectivity to different dis-
cretizations (including the number of bins, and whether to discretize by level or by derivative) in both real
data and realistic simulations. Theoretically, we will investigate whether adaptive-discretization schemes
developed for deterministic dynamical systems (Kennel and Buhl, 2003; Hirata et al., 2004; Hirata et al.,
2005) can be consistently carried over to stochastic processes.

Mutual Information Estimation. Accurate and precise mutual information estimates are crucial to our
approach. The naive approach plugs the the empirical joint histogram into Shannon’s formula. This is
consistent and quite accurate for large samples and small numbers of values for each variable. However,
it has long been known to be biased (Miller, 1955), with the magnitude of the bias growing with the size
of the sample space. While analytical expressions exist for the bias of this estimator under IID sampling
(Victor, 2000), they are difficult to work with and even more difficult to extend to serially-dependent data.

Currently we use the estimator proposed by Paninski (Paninski, 2003), which optimizes a variational
bound on the estimation error. However, we need to investigate the finite-sample biases properties of the
combination of this estimator with CSSR reconstruction, in particular the use of a model-based bootstrap
to obtain the error distribution and rates of convergence. We will also investigate the theoretical properties
of alternative estimators.

The joint-state reconstruction approach, mentioned above, will give us model-based estimates of the
mutual information between voxels. Experience with estimates of sequence entropy and entropy rate shows
that such estimates often converge much faster than estimates based directly on the sequence statistics.
We expect that something similar will be true here. However, if we try to jointly reconstruct a single
state-space for too many voxels, we run into a curse of dimensionality and excessive bias. We therefore
need to determine the risk curve for these joint-model estimates of mutual information.

Module Discovery: Consistency. The final part of our method is to build modules from the global
pattern of functional connectivity, which requires us to address the statistical properties of the Reichardt-
Bornholdt module-discovery procedure. The only prior work on this topic known to us (or to Drs. Reichardt
and Bornholdt; personal communication), is an investigation of the sampling distribution of the objective
function under the null hypothesis of the absence of modularity (Reichardt and Bornholdt, 2006b). The
issues involve both the use of estimated rather than true values of the mutual information, and the choice



of hierarchical scale γ.
In our preliminary work, we have established pointwise consistency, in the following senses. Holding

fixed the matrix of true mutual information values aij, and assuming that our estimates of those values

are themselves consistent, ICij
P−→ aij, at each scale γ of the hierarchy, the optimal partition σ̂∗γ estimated

from data converges on the population-optimal partition σ∗γ at that scale:

d(σ̂∗γ, σ
∗
γ)

P−→ 0 (3)

(The result is independent of the metric d(·, ·) on partitions.) This essentially follows from the convergence
of the objective function Hγ(~σ) for each partition (since it depends continuously on ICij), and the finite,
though large, number of possible partitions ~σ. We have also extended this result to one which holds
uniformly over ranges of scales, γ ∈ [0, γ1],

sup
γ∈[0,γ1]

d(σ̂∗γ, σ
∗
γ)

P−→ 0 (4)

The extension works because the objective function is affine in γ, which reduces the problem to the union
of the fixed-scale problem at finitely many scales.

The necessary next step is to extend these fixed-network results to ones which hold uniformly over
networks of suitably-bounded complexity. We believe this can be accomplished by measuring “complexity”
in terms of the growth of the number of cells in the optimal partition with γ. Controlling this complexity
should allow us to build combinatorial proofs for uniform consistency along VC or Rademacher lines. Once
rates of convergence of mutual information estimates become available, we will be able to propagate them
through to rates for module discovery.

A recent extension of the Reichardt-Bornholdt procedure (Reichardt and White, 2007) allows it to
recover “generalized block models” or “role models”, in which units are assigned to distinct functional
roles based on their pattern of connectivity with other units in their own roles. This includes the module-
finding procedure as a special case, where each module is a distinct role, and preferentially connects only
to units in the same role. We will adapt this to identifying the roles of voxels from time series. Consistency
of role-discovery can be tackled in the same way as consistency of module-discovery.

Module Discovery: Significance of Differences. Finally, since we are most interested in comparing pat-
terns of functional connectivity across experimental conditions, we need methods to assess the significance
of differences in such patterns. Asymptotically, consistency will take care of this, but the limited duration
of our experiments means we need something more. A simple way of obtaining the sampling distribution
of distances between estimated partitions, under the hypothesis that the generating distribution remains
fixed, is to randomly exchange entries between the two mutual information matrices from two experimen-
tal conditions and re-estimate the partitions. Sampling distributions under weaker null hypotheses which
require fewer invariants can be obtained by model-based bootstrapping, simulating from models fitted to
pooled data from both experimental conditions. This will be considerably slower than the simple exchange
test, but will extends the scope to a wider variety of questions.

Caveats and Pitfalls.
The biggest drawback of the procedure is that it contains multiple steps at which potentially high-
dimensional entities (predictive state-space models, mutual informations, functional modules) must be
estimated, with weak prior constraints. The amount of data required for such estimates to be reliable
can be quite considerable. It is thus not guaranteed that realistic experimental data sets contain enough
information for reasonably accurate and precise estimates along these lines. In such cases, we would expect
to find that differences in functional connectivity were almost never statistically significant, not because
nothing has really changed but because our models are under-constrained. Assessing rates of convergence
is thus of more than merely theoretical interest.



Data Analysis.

We will carry out the following steps:

1. Implement a fast, fully-automated system for processing data from voxel time courses all the way to
hierarchies of functional modules.

2. Compare the results of using CSSR for state-space reconstruction to using linear-Gaussian HMMs for
each voxel, estimating states with a Kalman filter, and then calculating mutual information from the
estimated states. We will do this both for simulated systems, with known functional connectivity, and
real data.

3. Assess the impact of different discretization schemes on real and simulated data.

4. Develop bootstrapping methods, as described above, for assessing the significance of differences in
functional-connectivity patterns, and use simulation studies to determine how large a change must be
before it can be reliably detected in data sets of an experimentally-reasonable size.

5. Implement the one-step refinement procedure and use simulation to assess the risk curve for using it
in a model-based estimate of mutual information between voxels.

D.1.2. What is the functional network for visual remapping? (Question 1)

Remapping reflects the transfer of activation from one group of neurons (those that encoded a stimulus
location before the eye movement) to a second group (those that will represent the stimulated location after
the eye movement). In the fMRI version of the single-step remapping task, the first group of neurons lies
in the hemisphere contralateral to the stimulus before the saccade. The second group lies in the opposite
hemisphere, which ends up being contralateral to the stimulus trace after the saccade (see Figure 1).
Remapping is measured as the response in second group of neurons to the stimulus trace. Our approach
thus far has been to identify which cortical areas exhibit remapping and to quantify the strength of the
remapped response in each area. Our previous analysis leaves open a fundamental question about the
underlying computation. Is remapped visual information computed in each cortical area independently?
Or, alternatively, is a coordinate transformation initially computed in parietal cortex, where remapping is
strongest, and then fed back to earlier visual areas? The proposed experiment will address this issue by
studying functional interactions between areas during the standard remapping task.

Procedure. We will use the same single-step remapping task that we have used in our previous studies of
remapping (see Figure 1). We will also test subjects on two control tasks: (1) The saccade-only control task
is identical to the single-step task in all respects expect that no stimulus ever appears on the screen. This
task is used to measure the response to a simple saccade in the absence of remapping. (2) The stimulus-
only control task is also identical with the single-step task, expect that the subject is never cued to make
a saccade. This task is used to measure the response to a visual stimulus in the absence of remapping.
We measure the size of the remapped response by taking the fMRI activity in the single-step task and
subtracting activity in the saccade-only and stimulus-only control conditions. Following on our previous
work, we will measure activity in 200 trials of the single-step task, and 100 trials for each of the control
conditions. The two control tasks will be run in a separate block of trials; previous work as shown that the
single-step task can induce a long-term memory response that can influence activity in the control task
(Umeno and Goldberg, 2001).

The procedure for the proposed experiment will differ from our previous remapping experiments in
two respects. First, we will take advantage of new methods for multi-channel imaging available at NYU
to sample brain activity across a larger portion of the cortex than was previously possible. Second, we
will follow new procedures for defining topographic cortical areas in parietal and frontal cortex. These two
advances will enable us to identify the full set of cortical areas that exhibit remapping and to test for
functional interactions between these areas.



Data Analysis. The goal of this analysis is to infer changes in the intrinsic interactions between cortical
areas as a result of remapping. First, we will analyze data according to standard approaches for measuring
functional connectivity (Haynes et al., 2005a; Haynes et al., 2005b; Friston, 2002b). Second, we will apply
the new methods for community discovery developed in Aim 1. Both methods will involve the same set of
preprocessing steps, as described below.

The methods we develop in Aim 1 are well suited to studying interactions both between individual
voxels within an ROI, and between ROI’s within a larger network of brain regions. For this experiment,
we are interested in interactions between entire brain regions, so the first analysis step will be to average
across voxels within each ROI. We will use retinotopic mapping procedures to identify the boundaries of
26 visual areas in occipital, parietal, and frontal cortex (see General Methods, Mapping retinotopic visual
areas). We will then identify the subset of voxels in each visual area that respond to the visual stimulus
in the stimulus-only fixation condition (the stimulus voxels). These are the voxels in which we expect to
observe strong inter-regional correlations in the single-step task. The remainder of voxels in each area
that do not respond to the stimulus will form a second subset, called background voxels. These voxels will
serve as a control for which we do not expect to observe changes in inter-regional correlations during the
single-step task. Finally, we will average the time series across visual and background voxels in each ROI.

In the single-step remapping task, the driving effects of the stimulus and the saccade induce correlations
that do not reflect intrinsic inter-area interactions within the brain (Gerstein and Perkel, 1969). It is thus
critical to remove both the stimulus and saccade signals from the time series measured during the single-step
task prior to computing inter-area interactions. As a preprocessing step, we will calculate a residual time
series by subtracting a predicted mean time series associated with the two control conditions. Specifically,
after computing the parameter estimates of the fMRI response in the stimulus-only and saccade-only
control conditions, a predicted mean time series ŷ will be computed by multiplying the design matrix by
the parameter estimates, that is, ŷ = Aẋ. The residual time series will then be computed by subtraction,
yielding r = y − ŷ, where r is the residual vector.

Having removed the stimulus and saccade signals, will perform a standard functional connectivity
analysis, as follows. We will compute a matrix of correlation coefficients for each pair ROIs. The single-
step task is designed to produce remapping on trials in which the eye movement moves the stimulus
trace into the contralateral visual field (remapping trials). The task does not produce remapping when
the eye movement moves the stimulus trace into the ipsilateral hemifield (control trials). We will compute
correlations separately for both types of trials. For each voxel, the residual time series epochs corresponding
to remapping and control trials will be concatenated separately. Next, correlation coefficients will be
computed for each pair of ROIs. Finally, the effect of remapping will be quantified as the difference between
the two correlations (remapping − control), for each pair of ROIs.

Potential Outcomes. We expect that remapping will have an impact on correlations between cortical
areas. The pattern of interactions between cortical areas will yield insights into the underlying neural
mechanisms that produce remapping. One possible outcome is that the changes in correlation will be
highly focused to a few pairs of areas. For example, as our preliminary data suggest, multiple visual areas
may become more tightly correlated with the IPS during remapping, but not show substantial correlation
changes with each other. This result would suggest that the remapping signal originates via computations
directly involving the IPS. A second possibility is that changes in correlations will be diffuse throughout
the network. This result would suggest that computing the remapped target locating is a widely distributed
function, implying that remapping is carried out in parallel at multiple stages of the hierarchy. Finally,
we expect that changes in inter-area correlation will be limited to the stimulus voxels, because these are
the voxels that exhibit remapping. The background voxels, which we have previously demonstrated to not
exhibit remapping, should not exhibit changes in correlation in this experiment.



D.2. SPECIFIC AIM 2 / QUESTION 2

Our studies of remapping highlight one neural mechanism by which the brain may create a stable perception
of the world during eye movements. Computational models have described a related mechanism based on
multiplicative interactions between visual and oculomotor signals. According to this model, the direction
of gaze modulates the gain of visual activity. While such effects have been widely reported in the monkey
neurophysiology literature (Boussaoud and Bremmer, 1999; Andersen et al., 1990; Snyder, 2000), little is
known about eye position modulation in humans.

In this section, we introduce the notion of an fMRI response eld, which is a measure of a voxels
selectivity for spatial locations. We describe a new method for measuring response elds in humans using
spatially complex, time-varying white noise stimuli and a novel data analysis techniques We then propose
an experiment that uses the new method to test for eye position modulation in humans.

D.2.1. Methodology: Simultaneous Estimation of Visual Response Fields

Estimating response fields is a high-dimensional spatio-temporal problem with strong a priori constraints
that are not easy to account for in statistical terms. To set up the problem, we need to distinguish
coordinates in the visual field and coordinates in the brain. The white-noise paradigm decomposes the
visual field into a collection of p tiles, and data aquisition decomposes the brain into a three-dimensional
grid of voxels. Typically, we are interested in a particular set of voxels V of size m that lies in the brain
or in a particular region of interest. Of course, the voxel coordinates are artificial, and ultimately what we
care about are locations on the cortical surface.

In the white-noise paradigm, the stimulus produced at the jth tile can taken as a sequence sjt of ±1s for
all t = 0,∆, . . . , (n−1)∆. The TR parameter ∆ is defined by the experimental design, but for convenience
here, we will take it as 1 without loss of generality. As described above, we use M -sequences, which have
the properties that they mimic white noise, have mean zero, and for each j, sj is a circular shift of s0 by δj,
for some integer δ. The response field is described by the spatial distribution of responses to the stimulus
in each tile. Specifically, we assume parameters βvj describing the response in voxel v to the stimulus from

tile j, so that the total response at voxel v is just the linear combination
∑p−1
j=0 β

v
j s

j
t . We assume further

that the hemodynamic response has a convolution structure with impulse response function αvt . Thus, if
Y v
t denotes the centered and detrended data at time t and voxel v, we assume that

Y v
t =

αv ∗
∑

j

βvj s
j


t

+ εvt , (5)

for a Gaussian, mean zero noise process ε and where ∗ denotes (circular) convolution. We can write this
equivalently as

Y v
t =

∑
j

βvj
(
αv ∗ sj

)
t

+ εvt . (6)

In general, both matrices β and α are unknown. To maintain identifiability in this model we need to impose
constraints that prevent ambiguous scalings of the parameters. To this end, we enforce the constraint that
for every v,

∑
t(α

v
t )

2 = 1. Although our primary interest is in making inferences about β, the impulse
response functions are also of scientific interest.

By imposing other constraints, derived from prior information, we can improve estimation of β and a.
For example, typically α is effectively zero after a short time span, so we assume that αvt = 0 for t > m0

where m0 is a small integer on the order of 16–20. Similarly, αvt will tend to vary smoothly across time.
Similarly, β will tend to be sparse, meaning that most βvj s equal 0, because of the relatively small size of
receptive fields in the cortical areas that we propose to study. We will also usually require that the β’s be
non-negative because they represent a positive response to the stimulus. Indeed, we can typically assume



that there is only one (or at most a small number) focal response field for each tile j. We also expect αv and
βv to vary smoothly across voxels, at least over neighbhorhoods where the voxels have similar anatomical
and response profiles. (See D.3 ATTN ATTN) The goal of our analysis is to construct good estimators of
β and α, along with useful assessments of uncertainty if possible.

We will investigate three approaches:

1. Alternating Sparse Regression,
2. Sparse Bayesian Sampling, and
3. Iterative Clustering,

using data in voxel coordinates and in cortical surface coordinates on a computationally inflated brain.
The latter reduces the problem from three-dimensions to two, although the coordinate positions no longer
remain on a grid.

Alternating Sparse Regression.
If we are to estimate α and β simultaneously, the problem is nonlinear. But equations (5) and (6) reveal
that it is composed of two linear problems: given α we have a linear model for β and vice versa. This
suggests iteratively alternating between solving the two problems.

In the first stage of each iteration, we take α as known, equal to the previously fitted value and
initialized to the fitted value from a simple parametric family. Then, if we stack entries over time and voxel
with time varying fastest, then equation (6) can be re-written as a linear model of the form

Y = Kβ + ε, (7)

where K is a nm×pm matrix with K(v,t),j = (αv ∗sj)t and (v, t) represents the index in the stacked vector.
The matrix K can be quite large in practice, but we can take advantage of the convolutional structure by
taking Fourier transforms on both sides of equation (6). This leads to a linear model in β analogous to
equation (7) with a design matrix K̃ = D · S where D is diagonal and S is block diagonal with identical
blocks, and thus is itself block diagonal with blocks that can be computed quickly.

Although β is high-dimensional, it is very sparse, so we will use a sparse regression technique to estimate
it at each stage. The simplest is the lasso [ATTN Tibshirani..., Meinshausen] in which one minimizes
‖Y −Kβ‖22 + λ‖β‖1, or equivalently minimizes the residual sum of squares subject to a constraint on
the absolute sum of the βs. The lasso produces sparse solutions that can be computed efficiently even in
very large problems and that have good performance in both prediction and inference problems. With the
LARS algorithm [ATTN Efron...], solutions can be computed for every λ simultaneously, and a value of
λ can be selected with cross-validation or by minimizing an empirical risk (e.g., SURE), depending on
the context. Moreover, in very large problems, the lasso can be computed relatively quickly by iterated
marginal regressions [Tibshirani; Genovese, Jin, Wasserman ATTN].

In our situation, the standard lasso needs to be modified in several ways. First, we want to impose
positivity constraints on β. For this, we will make straightforward modifications to the the LARS algorithm
to only bring in variables in a positive direction and will show that this solves the positivity constrained
optimization problem. For large data sets, we will use the special structure of the problem in the Fourier
domain to solve the β-fitting stage iteratively over sub-blocks of K̃. We will use pilot data to estimate the
temporal and spatial correlation function in the data and use this to approximate the covariance structure
in the regression problem.

The lasso will provide sparse solutions but by itself will not take into account the geometric regularity
of the response field. Thus, the second modification of the lasso will be to add a spatial smoothness
penalties for the β’s to the objective function. The simplest such penalty function is the sum of squares
of first-differences βv+1

t − βvt . We will also consider sums of squares of the discrete Laplacian of βt, which
is analogous to the typical Sobolev penalty in smoothing splines [Wahba ATTN]. And we will apply the



adaptive smoothing neighborhoods from Specific Aim 3 (see D.3.ATTN) and penalize the first differences
or Laplacians over those neighborhoods only. These 2-norm penalties are convex and differentiable in β.
They change the optimum solution and add an extra tuning parameter that must be selected. We will
adapt existing algorithms to efficiently find solutions to these modified problems.

Finally, we want to exploit the information that there is only one contiguous region (or in general a
small number of them) constituting the response field. To this end, we will employ the modified sparse
regression techniques in a greedy iterative algorithm. Initially, the algorithm will find the location of the
strongest signal, as measured by the sum of the β’s over a small contiguous neighborhood (e.g., 1,4, or 9
voxels). Then, it will successively add the strongest contiguous locations to the region – with the marginal
value of the parameter – until the objective function does not decrease by at least a specified threshold.
While this “seed growing” method is not guaranteed to find the minimum objective value, it has performed
very well in preliminary work.

In the second stage of each iteration, we take β as known, equal to the previously fitted value. Re-writing
equation (5) reveals a linear model in α:

Y v
t =

∑
u

αvuc
v
t−u + εvt , (8)

where cvr =
∑
j β

v
j s

j
r. Hence, by stacking the vectors, we can write Y = Cα + ε, where again C is block

diagonal. We use the constraint that α is zero beyond a fixed number of components to keep the size of
C manageable (i.e., most columns can be eliminated) and use its block-diagonal structure to solve the
regression problem efficiently (e.g., iterating over the blockwise problems). For each v, we impose the
constraint that

∑
t(α

v
t )

2 = 1, which complicates the optimization because there are #(V) such constraints.
We also want to impose smoothness constraints on α over time and space, using sums of squares of first or
second differences as above, across t and v separately. Again, the adaptive smoothing developed under Aim
3 will be helpful here. For larger problems and to handle the number of constraints, we will use iterative
backfitting [Hastie et al. ATTN], cycling over the separate voxel problems.

Because the objective function (for both stages of the iteration) is convex, the alternating solutions
should converge to the global minimizer of the objective subject to the union of the constraints on β and
α. Notice that in principle we can incorporate arbitrary spatio-temporal correlation structure for ε, but in
practice, when the size of the problem gets large, we may need to approximate the correlation structure to
avoid representing the entire correlation matrix. In such cases, we will likely restrict our attention to white
noise and low order autoregressive models, in space and time, which appear to fit most fMRI data quite well
[ATTN:REF]. Notice also that there is nothing special about voxel-coordinates in this formulation of the
problem and that the same structure works in cortical surface coordinates as well. The spatial smoothness
penalties will need to be altered slightly on the cortical surface; instead of differences over a grid, we will
use nearby points in the cortical projection. Our preliminary work in this direction has been successful so
far, as described in C.ATTN.

One of the goals of our experiments is to detect changes in response fields as a function of covariates
such as eye position. This task is complicated by the difficulty of getting sharp assessments of uncertainty
for lasso-type estimates. One reason for this difficulty is that the null distribution of the lasso coefficient
estimators is skewed with an atom at zero. We will begin adapting the standard error estimates of Osborne
et al. (2000) to compute standard errors of summary statistics of the response fields such as center of mass.
We will investigate other approximations to the standard errors and evaluate the accuracy of these tests
in simulations.

Sparse Bayesian Sampling.
As an alternative to the heavily iterative method just described, we will implement a Bayesian version of
the model that uses priors to enforce the required sparsity. The primary advantage of a Bayesian model



in this context is that it is easier to handle qualitative constraints and in particular in maintaining one
contiguous region in the response field. The latter constraint is likely to have a quite powerful effect on
performance.

The likelihood for the hierarchy will be based on the Normal distribution in equations (5) and (6).
But the full likelihood will not need to be computed because at each stage of the chain we can exploit
the reductions given in equations (7) and (8), possibly using the Fourier representation for the former.
Our initial prior specification will be relatively simple, designed to produce sparsity in β and smoothness
in α. For β, we will start with a logistic prior conditioned on non-negativity of the components, which
is analogous to the non-negative lasso described above and which is relatively straightforward to sample
from. For α, we will use a Markov Random Field (MRF) prior (cf. section D.3.1 and Geman and Geman
ATTN:REF) that makes the conditional distribution of αvt a (truncated) Normal mean parameter equal to
a weighted average of αws for neighboring values of s and w subject to the normalization constraint. This
will be sampled with a Metropolis-Hastings chain that updates one coefficient at a time, and we will explore
ways to make more efficient moves. We will also consider a prior that allows only one contiguous group of β’s
to be non-zero. This requires some care in choosing sampling moves that can cross low-posterior barriers.
For example, moves that slightly shift or distort the region as a whole will lead to a chain with better
mixing than if it is restricted to single parameter moves. We will also consider adapting the techniques
under Specific Aim 3, a Bayesian hierarchical model can be extended to impose better spatial smoothness
constraints on α and β.

We will compare performance of this approach, both in computing requirements and accuracy, to
the iterative scheme. One additional benefit of the Bayesian method is that it makes it easy to assess
uncertainties. We will use the posterior to quantify inferences about how the response fields change with
covariates such as eye position and attention. Evidence for these changes include changes in the magnitudes
of the β’s and changes in the shapes and sizes of the regions. We will begin by considering the posterior
distributions of summary statistics such as the center of mass of the response field (weighting by the
β magnitudes) and principle axes of the regions. This will be useful for detecting shifts and changes in
orientation. More generally, we will extend the techniques for assessing posterior changes in contiguous
regions developed in Genovese (2000).

Iterative Clustering.
Finally, we can adapt the information neighborhood method from Specific Aim 3 (see ATTN below) to find
a set of locations within which the voxels have high mutual information with each other and low mutual
information with voxels outside the set. We will assess whether this set by itself is a good estimate of the
response field and compare this method with two sparse regression techniques.

Caveats and Pitfalls.
There are three significant challenges here. The first is properly handling the spatial smoothing of α and
β. This requires both some care and experimentation to avoid undue bias, and we will benefit as well
from our work on Specific Aim 3. The second major challenge here is computational. Both the iterative
and Bayesian techniques are intensive, but we can take advantage of special structure in the problems, as
described above, and modifications of existing algorithms to make the inferences efficient. Sampling from
the posterior in the Bayesian version of the models requires some care in the construction of moves. We will
carefully diagnose mixing and validate performance of the MCMC simulations. The third major challenge
is inferential. Statiatically comparing response fields across different values of a covariate can lead to quite
complex procedures. Initially, we will compare summary statistics related to location and orientation, but
more general methods will be useful. The Bayesian formulation of the problem has an advantage in this
regard.

Data Analysis.
We will carry out the following steps:



1. Implement the alternating sparse regression method including non-negativity constraints and using the
special structure in the Fourier representations. Implement the basic Bayesian model using a logistic
prior on β to enforce sparsity.

2. We will compare these methods to each other and to the commonly used reverse correlation method
(Hansen:2004p107). In our preliminary work, sparse regression improves performance over reverse
correlation by approximately an order of magnitude, even for low signal to noise.

3. Incorporate spatial smoothing constraints into the alternating sparse regression techniques and evaluate
performance based on simulations.

4. Incorporate the single-region constraint into the Bayesian model and evaluate performance based on
simulations.

5. Compare the best formulation of the sparse regression and Bayesian model with the clustering technique
using real data and (additional) simulations.

6. Estimate the response fields from the experimental data using the best method from our assessment.
7. Develop tests that can detect changes in response fields as a function of covariates such as eye position

and attention. Using eye position initially, we will begin looking for changes in location and orientation
of response fields and extend to other functionals that describe higher-order featurs of the response
fields’ shapes.

D.2.2. Does visual cortex contain a representation of eye position? (Question 2)

The aim of this experiment is to test the interaction of eye position and visual representation. We will
use the methods for estimating visual response fields developed in Aim 2 to test the hypothesis that eye
position modulates the gain of visual activity in several occipital lobe visual areas.

Procedure. We will measure visually-evoked responses while subjects fixate a set of locations on the
screen. Areas that are modulated by eye position will exhibit systematic changes in the size of visually-
evoked responses that depend on the location of the eyes. There are two critical features of the experimental
design: the stimulus used to drive visual activity and the eye positions at which visual activity is measured.
The stimulus will consist of a circular field of static dots 6◦ in diameter. One-quarter of the field will form
a motion-defined wedge (Figure 8A) in which the dots move in an optic flow pattern either toward or away
from the fixation cross. This wedge will slowly rotates around the fixation cross at a rate of 1/24 s, inducing
a traveling wave of activity across the cortex, as in standard retinotopic mapping experiments. We have
found this stimulus is highly effective in driving responses throughout the visual system, particularly in
motion-sensitive regions (Huk et al., 2002), This stimulus controls for net luminance, image contrast, and
motion energy across the different eye positions. This is a critical feature because it ensures that changes
in response amplitude can only be attributed to the influence of eye position.
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Figure 8. Stimulus for testing eye position gain fields in hu-
mans. A, Subjects fixate the center of a circular dot field (6◦

diameter) in which one-quarter of the field (a 90◦ wedge) moves
according to an optic flow pattern. The wedge rotates 22.5◦

every every 1.5 s, completing a full rotation every 24 s. The
wedge rotates through 10.5 cycles in a single scanning run. B In
each run, subjects fixate a cross located at one of eight possible
screen locations (−11◦, 0◦,+11◦ horizontal, and −5◦, 0◦,+5◦ ver-
tical, excluding the screen center). Gray shaded circle indicates
the location and relative size of the stimulus when the eyes are
at −11◦, 0◦.

We will measure the response to the motion stimulus at number of different eye positions arranged
around the perimeter of the screen. The visual display apparatus at NYU permits a 28◦ × 16◦ field of



view. We will test eye positions ranging from ±11◦ horizontal, and ±5◦ vertical so that the 6◦ stimulus
abuts the edge of the screen (Figure 8B). The choice of the number of eye positions at which to measure
visual activity represents a trade-off. Increasing the number of eye positions will increase the sensitivity
of the design to subtle changes in response amplitude, but lead to fewer trials per eye position (and thus
higher variance in the estimate of visual response amplitude). Conversely, devoting more trials to each eye
position will limit the total number of possible eye positions. In pilot studies, we have had good success
testing eight different eye positions, with 20 cycles of the visual stimulus per position.

To maintain proper fixation and consistent behavioral state, subjects will perform a two interval forced-
choice luminance discrimination task on the fixation cross. On every trial of the fixation task, the cross
will initially be cyan (500 ms), then be briefly dimmed during each of two target intervals (100 ms). The
two target intervals will be separated by a 500 ms period in which the cross will again be cyan. After a
final 500 ms cyan interval, the cross will turn yellow to indicate the response interval. The subject will be
given 1 second to press one of two buttons indicating whether the cross will be darker during its first or
second dimming. If the subject chose correctly, the cross turned green, otherwise, red. The task was run
asynchronously with the rotating wedge stimulus. On each trial, the target luminance decrement was set
by a 2 down 1 up staircase to maintain a performance near 71% correct (Wetherill and Levitt, 1965).

Data analysis.

D.3. SPECIFIC AIM 3 / QUESTION 3

The question here is whether eye position signals in early visual cortex have a fine-scale spatial structure.
Our preliminary results at low-resolution indicate that the influence of eye position on visual activity varies
from voxel to voxel, with no global pattern across voxels. However, optical imagining studies in monkeys,
which have a much higher resolution than fMRI, do indicate a fine topography for eye position gain fields
(Siegel et al., 2003). We will take advantage of new scanning methods developed at NYU to collect data at
a voxel resolution of 700 µm isotropic, an almost 80-fold decrease in the total volume of each voxel. Signal-
to-noise ratio is inversely proportional to voxel size; accordingly, our preliminary data at high resolution
document a dramatic decrease in the signal-to-noise ratio. The new statistical methods in Aim 3 will help
recover some of the signal lost by moving to higher spatial resolution.

D.3.1. Methodology: Adaptive Smoothing of High-resolution Data

In fMRI, it is common prior to statistical analysis to smooth the data across voxels, typically using a
fixed bandwidth kernel with bandwidth set a priori [ATTN cites]. The goal is to exploit similarity in the
signal structure among neighboring voxels thereby increasing signal to noise. As usual, smoothing induces
a bias-variance trade-off: larger bandwidths include more disparate voxels but borrow strength across a
wider base while smaller bandwidths average over a more homogeneous but smaller set. But the trade-
off is even more complicated in this case because signals from neighboring voxels can exhibit completely
dissimilar structure when separated by anatomical or functional boundaries. The resulting bias degrades
the estimated signal in voxels near the boundary and leads to imprecise estimates of region shape because
fine-scale and edge features are differentially degraded. For large, focal active regions with a big area to
perimeter ratio, the added bias from these boundary effects will not unduly change results, but for smaller
regions and fine-scale features (e.g., along narrow sulci) for which most voxels are near the boundary,
the signal can be significantly degraded and the estimated active region oversmoothed. Such degradation
affects smoothing in either the original voxel coordinates or when the data are projected onto the surface
of an inflated brain. And more relevant to this proposal, the problem is especially severe and important
for high-resolution data where fine-scale structure will be the norm and noise levels will be high.

Here we propose two methods for adaptive smoothing: using the data to determine the neighborhoods
over which to smooth. The first method maintains smoothing as a pre-processing step. It solves a sequence



of two-component clustering problems to identify neighborhoods of each voxel that have high mutual
information with that voxel and constructs a weighted average of the corresponding time series. The
second method incorporates the smoothing into the statistical inference. It posits a Bayesian hierarchical
model for the data that includes smoothing neighborhoods as parameters. We discuss these two methods
in detail in what follows.

Denote the detrended data by a collection of random variables Y = (Yvt : v ∈ V , t ∈ T ), where v
varies over voxels in a finite set V (corresponding to voxels in the brain) and t varies over times in the
set T specified by the experimental design. We write Yvt = µv + Fv(t) + εv(t), where µv is the baseline
signal (in the absence of the BOLD effect), Fv is a possibly random BOLD response to the experimental
manipulation, and εv is a stationary, mean zero noise process. While in general, Fv and εv may be dependent
because of movement- or physiological-related artifacts, we will initially assume that such artifacts have
been measured and corrected and take Fv and εv as independent for each v. We will follow typical practice
and use a parametric model for the distributions of the response and noise processes. (One usually ignores
the randomness in the response and models Fv as a parametric family of functions Fv(t;θ). Part of the
observed variation in θ would thus reflect the ignored randomness.)

Information Neighborhoods. The idea behind the first method is to identify a neighborhood of each
voxel v within which all the time series contain as much information as possible about the response Fv
and then to smooth the data by averaging (or otherwise combining) the times series in this neighborhood.
We frame this as a two-component clustering problem for each voxel with the clusters being a set Av ⊂ V
containing v and its complement V −Av. We will construct Av by solving an optimization problem of the
form

Av = arg min
A:v∈A

Uv(A), (9)

for a submodular set function Uv defined on subsets of the voxel set V .
A set function U on the subsets of a finite set V is submodular if it gives diminishing returns to adding

an element to the set. Specifically, U is submodular if A ⊂ B and w ∈ V implies that

U(A∪{w})− U(A) ≥ U(B∪{w})− U(B). (10)

(We take U(∅) = 0 without loss of generality.) A variety of useful objective functions are submodular,
including mutual information between variables and, under weak conditions, information gain and variance
reduction for predicting one variable in terms of several other variables. Positive linear combinations of
submodular functions are also submodular. The key feature of submodular functions is that, analogously to
convex functions, they have unique minima and can be minimized efficiently [ATTN Edmonds71, Lovasz83].
Polynomial time algorithms exist [ATTN Iwata01] though they are not necessarily practical. Algorithms
used in practice have demonstrated [ATTN Guestrin et al???, Queyranne95] good performance in a wide
range of problems, suggesting that the collection of Avs should be obtainable in minutes for a single data
set.

Initially, we will define Uv in equation (9) in terms of the estimated pairwise mutual information
between voxels Iuw = Î(Fu, Fw) for u,w ∈ V , as follows:

Uv(A) =

 ∑
w′ 6∈A

Ivw′ −
∑
w∈A

Ivw

 + λ

 ∑
u∈A
w′ 6∈A

Iuw′ −
∑

u,w∈A
Iuw

 . (11)

where λ ≥ 0 is a pre-specified constant. This is a submodular function that is small when the voxels in A
have responses with high mutual information with each other and with v and small mutual information
with time series outside A. The value of λ reflects a tradeoff between homogeneity of the time series and
similarity with voxel v. We expect to have λ < 1 and that for reasonably small λ, the results will be



insensitive to the specific value. We will also investigate the alternative of using only the first term (λ = 0)
and will consider replacing Iuw by a measure of shape similarity, such as the rank correlation of Heckman
and Zamar (2000).

Because we do not know the mutual informations I(Fu, Fw), we need to estimate them. We will do this
using the technique developed for Aim 1 (see D.1 [ATTN]) and demonstrated in section C.1. Specifically,
we will use local polynomial regression to estimate the derivative of Fv and discretize that derivative into a
small number of bins. By fitting the resulting discrete time series using CSSR, we obtain estimated Markov
structures from which we estimate mutual information. The work under Aim 1 will refine this technique
further and develop theoretical and empirical assessments of performance.

Once the smoothing neighborhoods are computed, we will combine the corresponding time series to get
a smoothed version of Yv. Initially, we will consider distance-weighted (d(v, u)/

∑
w d(v, w)) and information-

weighted (Ivu/
∑
w Ivw) averages, where distances will be measured in inflated-cortex coordinates. But we

will also consider other ways to choose the coefficients such as maximizing the I(Fv,
∑
αuFu) over αu

[ATTN] and allowing shifting and scaling to better match shapes.

When keeping smoothing as a pre-processing step, a natural alternative to the information neighbor-
hoods approach is to cluster the time series so that those with similar temporal “shape” will be clustered
together. While we prefer the information neighborhoods because they are local and do not require solving
the difficult problem of selecting the number of clusters, the clustering approach has two advantages. First,
the clusters need to be computed only once rather than separately for each voxel. Second, clustering is
more flexible, allowing a wide range of criteria, many developed in the literature on clustering for functional
data [ATTN REFS]. Here, we will consider clustering based on the shape of the estimated responses, the
estimated parameter vectors in response model, and mutual information.

Note that this method can be used for data in voxel coordinates or in cortical surface coordinates
on an inflated cortex. We expect the gains to locality from using surface coordinates to outweigh the
induced smoothing and correlation from doing the inflating, but we will compare results and simulations
to determine which is the better domain for adaptive smoothing.

Bayesian Hierarchical Model with Collage Prior. Our second approach to adaptive smoothing is to build
the smoothing into the inference through a Bayesian hierarchical model. If neighborhood dependencies
among the responses are included in the model, the posterior distribution effectively smooths the data. A
Bayesian formulation has several advantages over a classical approach in this context. In particular, discrete,
qualitative parameters – like the smoothing regions – can be included easily in the model. Moreover, by
building the smoothing directly into the model, downstream inferences are no longer distorted by the
preprocessing steps.

We will begin with a pre-existing Bayesian model for the voxelwise data; several have been proposed
[genovese00, buxton??, ATTN] and one can easily be constructed from the common General Linear Model
formulation. Assume for this discussion that βv represents the d-dimensional vector of response parameters
(e.g., log percent signal change for every experimental condtion) for the voxelwise model at voxel v with
all components on a common scale. Given a voxelwise model, we build an adaptive smoothing model by
adding layers to the hierarchy that makes the β parameters dependent across voxels.

The most basic such approach is to put a Markov Random Field (MRF) prior on the collection of
β vectors [Cressie ATTN]. The MRF decomposes the joint (prior) distribution of the βv’s into lower-
dimensional distributions on a collection of voxel subsets called cliques. That is,

f(βV) ∝
∏
C
f(βC),

where the product is over all cliques C and βA denotes the collection of βv’s for which v ∈ V . A Markov



Property follows wherein the conditional distribution

f(βv | β−v) ∝
∏
C:v∈C

f(βC).

This conditional distribution can thus be written solely in terms of the neighborhood of v: Nv =
⋃
C:v∈C

C.
A common MRF model assumes that this conditional distribution is Gaussian whose mean is a weighted
average of the neighbors:

βv | β−v ∼ N

av +
1

#(Nv)
∑
u∈Nv

wvuβu, τ
2
v Id)

 , (12)

for a d× d identity Id and for constants av, wvu, τ
2
v ∈ R. When β represents the log percent signal change,

for example, we might take av = −7 (i.e., effectively zero) so the percent signal changes are a priori
centered on the geometric mean of the neighboring voxels. Using a MRF prior for β requires specifying the
cliques C which results in a particular neighborhood structure (which must satisfy u ∈ Nv if and only if
v ∈ Nu). Given a voxelwise model, we can extend the hierarchy by including the MRF as the prior for the
responses. A posterior sample can be efficiently constructed using MCMC (specifically Gibbs’ sampling in
the Gaussian case) as described in [Geman and Geman 1980, Geman and McClure 1994 ATTN].

Despite its simplicity, the MRF prior has two significant disadvantages for adaptive smoothing: the
neighborhood structure is pre-specified, which limits adaptivity; and the MRF prior oversmooths fine
structure because it allows no sharp boundaries. Methods to overcome these problems include adding
additional layers of the hierarchy to allow breaking the dependence along boundaries [Geman...ATTN] and
carefully selecting cliques to conform to existing (e.g., anatomical) boundaries. While we will implement
both approaches for adaptive smoothing as a testbed for comparison, here we propose a related but distinct
alternative model.

As with the MRF, we will specify a prior on the response parameters β, which we call a collage
prior. Rather than using a fixed neighborhood structure, the collage prior specifies a distribution on the
smoothing neighborhoods. The random process underlying the prior can be decomposed into the following
steps:

1. A set of voxels, which we will call centers, is drawn from a (potentially inhomogenous) Poisson point
process on the voxel grid. The intensity function of the point process is denoted g and is fixed a priori
to match anatomical and other prior information.

2. At each center location, a random ellipsoid E is placed. Each ellipsoid is specified by its on orientation
(θ ∈ [0, π)), radius (r > 0), and aspect ratio (ratio of semi-minor to semi-major radius, 0 ≤ a ≤ 1),
which are drawn independently from a Uniform, a fixed density h1, and a fixed density h2, respectively.
We will choose h1 and h2 so that the typical active set under the collage prior is consistent with our
empirical studies of the signal for high-resolution data.

3. At each voxel v and conditional on all the other voxels’ responses, a value of β is drawn, independent
across components, from a Normal distribution whose mean is the average of the average β’s over all
ellipsoids to which v belongs.

In mathematical terms, the prior hierarchy is as follows:

N, c1, . . . , cN ∼ PoissonPointProcess(g)

(θ1, r1, a1), . . . , (θN , rN , aN) | N, c iid∼ Uniform(0, π)× h1(r)× h2(a)

βv | β−v, θ1, r1, a1, . . . ∼ N

av +
1

# {i : v ∈ Ei}
∑
i: v∈Ei

b+
1

#Ei
∑
u∈Ei
u6=v

βu

 , τ 2
v

 ,



where the constants av and b are chosen so that voxels outside any ellipsoids have very negative value (i.e.,
essentially zero signal change) and where the outer average is taken to be zero if v does not lie in any
ellipsoid. An alternative we have considered for the last stage of the hierarchy is to choose βv from an even
mixture of normals, each centered around the average of the other β’s in one ellipsoid containing v. (In
this case, a voxel not in any ellipsoids would have β drawn from a N(av, τ

2
v ) distribution, meaning that

the response is effectively zero.)
Combining the collage prior with the likelihood (and some priors) from a voxelwise model for the data

is straightforward. Sampling from the posterior requires a Metropolis-Hastings chain [ATTN] that can,
as ellipsoids are added and deleted, move across parameter spaces of different dimension. The reversible
jump framework [ATTN Green95] is effective in such problems, requiring only selection and calibration of
different move types to ensure detailed balance. In our preliminary implementations, though quite a bit
slower than typical voxelwise fits, the technique has been successful.

The biggest advantage of the collage model over the MRF is adaptivity. The collage smoothing neigh-
borhoods are not fixed a priori and can be combined to fit a wide variety of shapes, including those with
complicated or fine-scale structure. While the MRF prior can be calibrated to favor certain qualitative
features, its flexibility is limited. Moreover, the collage prior can produce sharp boundaries. Modifying an
MRF to have similar flexibility with sharp boundaries is challenging and requires greater complexity and
more parameters.

Caveats and Pitfalls. There are several issues to be considered for both methods. For information
neighborhoods, one of question is whether shape-measures or mutual information is a better choice of
criterion. The former focuses on what we most care about – a similar pattern of activation – but provides
at most a summary of some features; the latter gives a more comprehensive measure of dependence but
may not distinguish subtle differences in shape. This is an empirical question that we will address, and in
our preliminary analysis, mutual information does a good job of capturing the similarities we care about.
Another question is the degree to which the first step – the construction of the smoothing neighborhoods
– affects downstream inferences. Adaptive smoothing is highly nonlinear and affects the distribution of
the smoothed data. We will begin with data splitting, using two independent co-registered data sets
with the same paradigm and subject, defining the neighborhoods on the training data, and using those
neighbhorhoods to smooth. We will compare this with data and simulations to the results from using the
same data for training and analysis. We expect that this will not be a large effect.

One issue for the Bayesian model is the sensitivity of the results to the structure of the voxelwise
model. When the model fits well, the method will efficient but it may not be as robust as the information
neighbhorhood approach. Still the general success of the voxelwise models in the literature suggests that
the fit will be sufficient. A related issue is the sensitivy of the results to the prior specification. We will study
and quantitatively assess this sensitivity and develop tools for matching the prior to an expected spatial
structure of the signal. Another issue is computation. The full MCMC is significantly more computationally
costly than the typical analysis, but it remains completely feasible with currently available platforms and
data sets.

Data Analysis. An immediate goal in our development of adaptive smoothing methods is analysis of
the high-resolution data sets described above. To that end, we will take the following steps:

1. Study and quantify the structure of the noise and signal, looking in particular at correlation structure,
and typical size and shape of active regions. This effort will inform our model building and let us build
effective simulations for evaluation of methods.

2. Implement the information neighborhoods method using the objective in equation (11). We will com-
pare the results with the experimental data using standard smoothing and adaptive smoothing, both
in voxel coordinates and in cortical surface coordinates on the inflated brain. We will also compare the
methods using simulated data under a range of assumptions consistent with our study in step 1.



3. Using both experimental data and simulations, compare neighborhoods based on mutual information
with those based on shape, and compare local two-component clusters with a full agglomerative clus-
tering.

4. Implement the Bayesian hierarchical model with the collage priors. Tune and validate the MCMC
simulation and determine mixing times using simulated data. Compare results using the Bayesian
model with the adaptive smoothing on information neighborhoods. This comparison is complicated
because the Bayesian method gives a full analysis, so we will use the Bayesian voxelwise model on
the adaptively smoothed data. We will also compare the collage priors to an extended MRF prior
that includes parameters to break dependency links [ATTN Geman and Geman...] and allow sharp
boundaries.

5. Finally, we will use the method that performs best in our assessments going forward for analysis of the
remaining experimental data.

D.3.2. Do eye position signals have a fine-scale structure? (Question 3)

Procedure. The visual stimuli, illustrated in Figure. 9, will consist of a high-contrast checkerboard patterns
flickering at 4 Hz. The checkerboard stimuli will form a set of concentric rings which will alternate with
a complimentary set of anti-rings. The rings and anti-rings will alternate according to a simple block
alternation protocol (ABAB· · ·). The block duration will be 12 s (total period = 24 s). In each 264 s
functional run, 88 volumes (Time/Volume = 3 sec) corresponding to 22 alternations. Ten functional runs
will be acquired in each scanning session. Stimulus presentations were interrupted by 500 msec blank
stimuli every 3 sec to avoid perceptual filling in. The subjected was instructed to fixate a high-contrast
square at the center of the display.

A B C

10 mm spatial freq 5 mm spatial freq 2.5 mm spatial freq

Figure 9. Stimulus for testing effective spa-
tial resolution. Block alternation of annulus /
anti-annulus checkerboard stimuli. The annuli
produce bands of activity across the cortical
surface. Ring spacing is scaled with visual ec-
centricity to produce bands of different cortical
spatial frequency. Cortical spatial frequency of
10 mm (A), 5 mm (B), and 2.5 mm (C).

Data analysis. The data will be analyzed to estimate the stimulus-evoked modulation of the fMRI signal
(Bandettini et al., 1993; Engel et al., 1994). The following steps will be performed. 1) Data from the first
cycle of block alternation will be discarded to allow the hemodynamic response and tissue magnetization
to reach steady state. 2) Motion within each run will be corrected by aligning each volume to the first
volume of the functional run. Motion between runs will be corrected by aligning the mean of each run to
the mean of the first run (Nestares and Heeger, 2000a). Head motion parameters will be estimated after
cropping each volume slightly to account for the strong intensity roll-off at the edges of the field of view
due to the slab selection and outer-volume suppression. 3) The time series at each voxel was divided by
its mean to convert the data from arbitrary image intensity units to percent signal modulation and to
compensate for the distance from the receive coil. 4) The time series at each voxel will be high-pass filtered
to compensate for slow signal drifts. 5) The time series at each voxel will be fit with a sinusoid (24 s period).
6) The correlation between the time series and the corresponding best-fitting sinusoid and the phase of the
best-fitting sinusoid will be computed. The correlation value is a measure of the stimulus-evoked contrast
to noise ratio, taking a value near 1 when the fMRI signal modulation at the block-alternation period is
large relative to the noise (at the other frequency components) (Engel et al., 1997). The phase of the best
fit sinusoid measured the temporal delay of the fMRI signal relative to the beginning of the experimental
cycle, and consequently labeled cortical regions that responded to the rings versus the anti-rings.
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G. Protection of Human Subjects
G.1. RISKS TO HUMAN SUBJECTS

G.1.1. Human subjects invovlement and characteristics

Behavioral tasks. The tasks will involve looking at visually presented patterns on a computer monitor,
listening to auditorally presented tones or words; performing cognitive activity (e.g., remembering a visual
pattern or making a decision about a visual stimulus); making a response (e.g., a button press or an eye
movement) regarding the stimuli perceived; making hand movements.

Psychophysics experiments. Subjects will be instructed on how to perform the various visual and
cognitive tasks. They will perform these tasks in blocks of several minutes, with rest periods as needed.
Multiple sessions will typically take place over a period of several weeks and each such session will last
about 1 hour.

fMRI experiments. Subjects will be screened ahead of time to determine eligibility. They will be given
the NYU MRI screening questionnaire prior to participation. Subjects will be excluded if they indicate any
risk factor on these questionnaires, which include pregnancy. Women who are or who suspect they may be
pregnant will be excluded from these studies. Once a subject passes the screening, s/he will be instructed
to remove all metal objects before entering the magnet room (see below for details). After entering the
magnet room, subjects will be given earplugs to wear and instructed to lie on the MR table. Foam pads
will be placed around their heads to limit head movement during the scan. The table will then be slid
into the scanner so that the head and upper body are inside the magnet tube. They will view standard
projection of visual stimuli onto a screen in the back of the bore via a mirror.

Conventional anatomical scans will be taken during a period of about 15 minutes. High-speed functional
MRI images will be obtained during the rest of the session. Each functional MRI scan will last between
3-10 minutes. During the functional scans, subjects will be asked to hold still. Following each scan, the
experimenter/technician operating the MRI scanner will ask the subject how they are doing and if they
want to continue. If they like, subjects can take a brief rest in the scanner and then continue. They will
remain in the scanner during breaks, but they may close their eyes and rest. Subjects can decide to stop
at any time and will be taken them out of the scanner immediately. During the session they will hold a
panic squeeze ball that will enable them to notify the experimenter if they need immediate attention. Each
scanning session will typically last 1.5 hours.

Subject population. Our subject population will include approximately 50% men and 50% women
(age range: 18–65), and will reflect the demographics at New York University as follows
(see http://www.nyu.edu/ir/pdf/demographics/2007/Enrollment.pdf):

Hispanic: 6%
Asian/Pacific Islander: 15%
American Indian/Alaskan Native: 0%
Black (non-hispanic): 5%
White (non-hispanic): 45%
International: 12%
Unknown/other: 17%

These subjects will be found by advertising on campus electronic bulletin boards and by posting
announcements on old-fashioned bulletin boards. These subjects will be paid $25/hour for fMRI exper-
iments and $10/hour for psychophysics experiments. Some of the subjects will be laboratory personnel
who volunteer (i.e., they are not required) to participate in the proposed experiments. Lab personnel will
be instructed that their participation is entirely voluntarily. Some lab members will choose to serve as
subjects in each others’ experiments (i.e., payment “in kind” for the time). Others, who do not wish to
participate as subjects, will be asked to “pay in kind” by volunteering to perform other services such as



operating the scanner for someone else’s experiment. Subjects who are unable to attend to or respond to
stimuli as required by the experimental protocol will be excluded. There will be no cost to the subjects for
participation in this study.

G.1.2. Sources of materials

N/A

G.1.3. Potential risks

The risks from this study to the subject will be minimal. Subjects will be informed that they should contact
the PIs if they have experienced a research related injury.

Psychophysics experiments. The likelihood and severity of physical or psychological harm does not
exceed that in ordinary life or during routine examinations or tests—risks to individuals is minimal (with
the most likely negative consequence being boredom).

fMRI experiments. There are no known significant risks or side effects associated with MRI procedures.
The magnetic fields, at the strengths used are not harmful and our MRI scanning procedures fall within
the FDA guidelines for radiofrequency electromagnetic field exposure. These field strengths are at safe
levels and less hazardous than a comparable x-ray computed tomography examination. Exceptions include
if a person has electrically, magnetically activated implants (such as cardiac pacemakers), or to those
who have clips on blood vessels in their brain, or other metallic objects in their body such as shrapnel,
bullets, buckshot, or metal fragments. Therefore, subjects will be carefully screened for previous exposure to
metallic fragments or to implanted devices. The most serious potential risks are related to the possibility of
ferromagnetic objects in the vicinity of the high-field magnet in the scanner. These objects could conceivably
become projectiles due to the powerful magnetic field. Therefore, subjects will be asked to place all metallic
and magnetic objects in their possession (e.g. keys, jewelry, credit cards) in a locker available outside the
magnet room. Although there are no known risks of an MRI scan to the unborn fetus, we do not permit
participation by any woman who is or suspects she may be pregnant.

Most people do not find a magnetic resonance scan uncomfortable. However, on occasion some subjects
have reported mild discomfort. The following are some types of discomfort that have been reported with a
magnetic resonance scan. Some subjects have experienced claustrophobia (fear of enclosed spaces). Subjects
will be asked to lie on a table that slides into a horizontal cylinder only slightly wider in all directions than
their body and the head is secured to help minimize extra movement. If they are prone to claustrophobia
they should notify the researcher in charge of the scan. The MR scanner makes loud knocking or beeping
sounds during imaging; earplugs will be provided to help reduce this noise. Due to the rapid rate of
change of the magnetic gradients during imaging, the possibility exists for peripheral nerve stimulation. If
this happens, subjects may feel creeping or tingling sensations, typically along their arms or lower back.
Dizziness and nausea may occur if the subjects move their head in the bore of the magnet. Some subjects
find it uncomfortable to have a dental impression for more than a brief period and have found it can
interfere with swallowing, so bite bars will be used only with experienced subjects (typically laboratory
personnel). Finally, there may be some heating from the radio frequency coils, the cables to the coils,
response and physiological monitoring devices. The machine is calibrated so that this heating will be no
more than one degree of body temperature.

Subjects will be instructed to notify the investigators, as soon as possible, if at any time they feel
uncomfortable, no matter what the reason. Subjects will be in contact with the research staff throughout
the study through a microphone mounted on the MRI scanner. They will also be instructed in how to use
an emergency handheld squeeze ball to inform the operator if they wish to immediately stop scanning and
be removed from the magnet. The MRI can be stopped at any time at their request.



G.2. ADEQUACY OF PROTECTION AGAINST RISKS

G.2.1. Recruitment and informed consent

The experiments will be undertaken in compliance with the safety guidelines for MRI research. Prior
to participating in the study, subjects will be informed of the risks and benefits of the study, and will
fill out and sign the screening questionnaire and informed consent. Experimenters will verbally question
the subjects to make sure that the screening questionnaire and informed consent have been understood.
Subjects will be able to withdraw from the study at any time with no penalty (to date, we have not had
any withdrawals). The human subject protocols will be reviewed annually by the University Committee
on Activities Involving Human Subjects (UCAIHS).

Confidentiality of research records will be strictly maintained. All data will be stored on the PIss
computer file server, under password protection. Only the PIs and their designated research associates
will have access to the data. The results of these studies may be published in a book or journal or used
for teaching purposes. However, subjects names or other identifiers will not be used in any publication or
teaching material without specific permission. Data will be backed up on to CD, DVD, or computer tape.
These backup media will be stored in a cabinet in the PIss laboratory. Subject identity will be coded on
all documents so as not to breech confidentiality. After publication, the data will be removed from the PIss
computer file server. The backup media (CDs, DVDs, computer tapes) and other documents will be kept
indefinitely.

G.2.2. Protection against risk

Anyone involved in data collection must have successfully completed the UCAIHS training course at NYU.
Only certified investigators may be involved in subject recruitment and administration of informed consent.

To ensure safety during MRI experiments, every researcher at NYU will complete a safety training
course, every year. These safety courses are offered by the staff of the NYU Center for Brain Imaging.
Subjects will be carefully screened to make sure they do not have any metal before being taken into the
room with the MRI scanner. Subjects will wear earplugs to protect their hearing while in the MRI scanner.

Volunteers will be excluded for the usual contraindications to MRI exams, including pacemakers, sur-
gical aneurysm clips, known metal fragments embedded in the body including eyes. Women of childbearing
age will not be included in this study if they are or think they might be pregnant. Subjects with suspected
cerebrovascular or pulmonary disease or a history of such will be excluded. Subjects with a history of
migraine, arterial hypertension, coronary heart disease, asthma, anemia, or epilepsy will be excluded. Sub-
jects who have experienced claustrophobia will be excluded. Subjects will be carefully screened for these
conditions prior to scanning, using a standardized form/checklist.

G.3. POTENTIAL BENEFITS OF THE PROPOSED RESEARCH TO THE
HUMAN SUBJECTS AND OTHERS

There will be no direct benefits to subjects for their participation in the proposed experiments. The
physiological and psychological knowledge to be gained from these studies justifies the use of human
subjects.

G.3.1. Incidental findings

On occasion the brain images of a subject may reveal a potential brain abnormality. NYU has adopted a
policy concerning incidental findings that is in accordance with the recommendations of an NIH-sponsored
workshop on MRI Research Saftey and Ethics. The summary report from that workshop is available online:
http://www.nimh.nih.gov/about/advisory-boards-and-groups/namhc/reports/mri-research-safety-ethics.pdf



G.4. IMPORTANCE OF THE KNOWLEDGE TO BE GAINED

There are a number of ways in which the proposed research is aligned with the research objectives of the
National Eye Institute. The following are excerpts from the National Plan for Eye and Vision Research
(2003) stating goals an objectives for the Strabismus, Amblyopia, and Visual Processing Program:

• Understand how the brain processes visual information, how neural activity is related to visual per-
ception, and how visual processing interacts with other brain systems underlying cognition.
• Study the function, circuitry, and development of higher order visual areas to determine the effect of

attention and top-down influences on visual processing.
• Develop a mechanistic understanding of the origin of the signals that control attention and how they

alter the responses of neurons in visual processing and sensorimotor transformations.
• Develop imaging technologies to further understand the neural basis of amblyopia and related visual

deficits.
• Bridge the knowledge of what happens at the cellular level in the visual system with the knowledge of

visual psychophysics.
• Exploit the knowledge of the functional organization of the visual system in animal models with

noninvasive imaging studies in humans. The proposed research will contribute to each of these.
The experimental protocols and theoretical principles that we develop for studying normal vision
will be readily applicable to patient populations. A better understanding of visual attention will lead
to a better understanding of factors limiting peripheral vision, that are critical when central vision
is compromised due to macular degeneration and related visual deficits. Basic knowledge of visual
attention also has implications for our understanding of several neuropsychological conditions, including
unilateral neglect, schizophrenia and ADHD, and for informing the development of diagnostic tests.
We have an established track-record of pursuing opportunities for translational research (see Specific
Aims).



H. Inclusion of Women and Minorities
Inclusion of women. Our subject population will include approximately 50% men and 50% women,
reflecting the population as a whole. We will ensure very nearly 50% women by drawing actively from
the undergraduate students, graduate students, and postdocs at NYU.
Inclusion of minorities. Our subject population will reflect the demographics at New York University
(see above). Should we find ourselves falling short of the targeted number of minority subjects, we
will actively draw from the NYU undergraduate population. The NYU undergraduate population is
sufficiently diverse that it should be possible to achieve this target.



I. Inclusion of Children
NYU undergraduates under the age of 21 will represent children in our sample of subjects. We believe
that it is necessary to exclude children under the age of 18 for the following reasons. 1) fMRI experiments
of any type require a great deal of patience and concentration. Subjects must lie very still for long
periods of time in an extremely small space without moving their heads. 2) The behavioral tasks,
while they are not conceptually complicated, are nonetheless demanding and require long periods of
sustained attention. 3) The fact that we use relatively small sample sizes increases the importance of
having subjects that are extremely reliable and capable of performing the behavioral tasks at a high
level of accuracy. 4) Our stated goal is to study cortical function in the mature brain. This is not a
developmental study. Including subjects of various different ages ranging from children to adults could
introduce a confound in the interpretation of the results.

J. Vertebrate Animals
N/A



K. Select Agent Research
N/A



L. Multiple PI Leadership Plan
The proposed research is largely based on Genovese’s past statistical work on methods for fMRI (ATTN
refs) and Heeger’s past fMRI work on visual reference frames (ATTN refs). Because the proposed work
relies equally on our combined expertise, it is our understanding that we should both be listed as
Principal Investigators. We have a strong established track record of collaboration.
Following the instructions for grant applications with multiple PIs, we have developed a leadership
plan including governance and organizational structure of the leadership team, communication plans,
a process for making decisions on scientific direction, and procedures for resolving conflicts. Genovese
will be the lead PI overall. He will be primarily responsible for directing the statistical work. Heeger
will be primarily responsible for directing the fMRI experiments. It is expected, however, that two PIs
will contribute roughly equally to all of the proposed research. Funding will be shared as outlined in
the Personnel Justification and Additional Narrative Justification, i.e., no budget allocation is planned
for the specific components of the project nor to the individual PIs. The postdoctoral research fellow
will be jointly recruited and co-advised by the two PIs.



M. Consortium/Contractual Arrangements



N. Letters of Support
N/A



O. Resource Sharing Plan
N/A
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saccades: implications for spatial orientation. Ann Neurol, 38(5):739–48.

Hirata, Y., Judd, K., and Aihara, K. (2005). Characterizing chaotic response of a squid axon through
generating partitions. Physics Letters A, 346:141–147.

Hirata, Y., Judd, K., and Kilminster, D. (2004). Estimating a generating partition from observed
time series: Symbolic shadowing. Physical Review E, 70:016215.

Horton, J., Dagi, L., McCrane, E., and de Monasterio, F. (1990). Arrangement of ocular dominance
columns in human visual cortex. Arch Ophthalmol, 108(7):1025–31.

Horton, J. and Hedley-Whyte, E. (1984). Mapping of cytochrome oxidase patches and ocular domi-
nance columns in human visual cortex. Philos Trans R Soc Lond B Biol Sci, 304(1119):255–72.

Huk, A. C., Dougherty, R. F., and Heeger, D. J. (2002). Retinotopy and functional subdivision of
human areas mt and mst. J Neurosci, 22(16):7195–205.

Kantz, H. and Schreiber, T. (1997). Nonlinear Time Series Analysis. Cambridge University Press,
Cambridge, England.

Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., and Ungerleider, L. G. . (1999). Increased
activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron,
22(4):751–761.



Kennedy, C., Des Rosiers, M., Sakurada, O., Shinohara, M., Reivich, M., Jehle, J., and Sokoloff, L.
(1976). Metabolic mapping of the primary visual system of the monkey by means of the autoradio-
graphic [14C]deoxyglucose technique. Proc Natl Acad Sci U S A, 73(11):4230–4.

Kennel, M. B. and Buhl, M. (2003). Estimating good discrete partitions from observed data: symbolic
false nearest neighbors. Physical Review Letters, 91:084102.

Kim, D., Duong, T., and Kim, S. (2000). High-resolution mapping of iso-orientation columns by
fMRI. Nat Neurosci, 3(2):164–9.

Kim, S., Hu, X., Adriany, G., and Ugurbil, K. (1996). Fast interleaved echo-planar imaging with
navigator: high resolution anatomic and functional images at 5 Tesla. Magn Reson Med, 35(6):895–
902.

Klinkner, K. L., Shalizi, C. R., and Camperi, M. F. (2006). Measuring shared information and
coordinated activity in neuronal networks. In Weiss, Y., Schölkopf, B., and Platt, J. C., editors,
Advances in Neural Information Processing Systems 18 (NIPS 2005), pages 667–674, Cambridge,
Massachusetts. MIT Press.

Knight, F. B. (1975). A predictive view of continuous time processes. Annals of Probability, 3:573–596.

Kontorovich, L. (2007). Measure Concentration of Strongly Mixing Processes with Applications. PhD
thesis, Carnegie Mellon University.

Kontorovich, L. and Ramanan, K. (2007). Concentration inequalities for dependent random variables
via the martingale method. Annals of Probability, forthcoming.

Larsson, J. and Heeger, D. J. (2006). Two retinotopic visual areas in human lateral occipital cortex.
J Neurosci, 26(51):13128–42.

Larsson, J., Landy, M. S., and Heeger, D. J. (2006). Orientation-selective adaptation to first- and
second-order patterns in human visual cortex. Journal of Neurophysiology, 95(2):862–81.

Lee, S.-H., Blake, R., and Heeger, D. J. (2005). Traveling waves of activity in primary visual cortex
during binocular rivalry. Nat Neurosci, 8(1):22–3.

Lee, S.-H., Blake, R., and Heeger, D. J. (2007). Hierarchy of cortical responses underlying binocular
rivalry. Nat Neurosci, 10(8):1048–54.

LeVay, S., Hubel, D., and Wiesel, T. (1975). The pattern of ocular dominance columns in macaque
visual cortex revealed by a reduced silver stain. J Comp Neurol, 159(4):559–76.

Li, C. S. and Andersen, R. A. (2001). Inactivation of macaque lateral intraparietal area delays initia-
tion of the second saccade predominantly from contralesional eye positions in a double-saccade task.
Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale, 137(1):45–57.

Luria, A. R. (1973). The Working Brain: An Introduction to Neuropsychology. Basic Books, New
York.

McMains, S. A. and Somers, D. C. . (2004). Multiple spotlights of attentional selection in human
visual cortex. Neuron, 42(4):677–686.

Menon, R., Ogawa, S., Strupp, J., and Ugurbil, K. (1997). Ocular dominance in human V1 demon-
strated by functional magnetic resonance imaging. J Neurophysiol, 77(5):2780–7.



Merriam, E. P. and Colby, C. L. (2005). Active vision in parietal and extrastriate cortex. The
Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 11(5):484–93.

Miller, G. A. (1955). Note on the bias on information estimates. In Quastler, H., editor, Information
Theory in Psychology: Problems and Methods II-B, pages 95–100.

Montaser-Kouhsari, L., Landy, M. S., Heeger, D. J., and Larsson, J. (2007). Orientation-selective
adaptation to illusory contours in human visual cortex. J Neurosci, 27(9):2186–95.

Nakamura, K. and Colby, C. L. (2002). Updating of the visual representation in monkey striate and
extrastriate cortex during saccades. Proc Natl Acad Sci USA, 99(6):4026–31.

Nestares, O. and Heeger, D. (2000a). Robust multiresolution alignment of MRI brain volumes. Magn
Reson Med, 43(5):705–15.

Nestares, O. and Heeger, D. J. (2000b). Robust multiresolution alignment of mri brain volumes.
Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine
/ Society of Magnetic Resonance in Medicine, 43(5):705–15.

Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices.
E-print, arxiv.org, physics/0605087.

Newman, M. E. J. and Girvan, M. (2003). Finding and evaluating community structure in networks.
Physical Review E, 69:026113.

Offen, S., Schluppeck, D., and Heeger, D. (2008). The role of early visual cortex in visual short-term
memory and visual attention. Vision Res.

Ornstein, D. S. and Weiss, B. (1990). How sampling reveals a process. The Annals of Probability,
18:905–930.

Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15:1191–
1254.

Pfeuffer, J., van de Moortele, P., Yacoub, E., Shmuel, A., Adriany, G., Andersen, P., Merkle, H.,
Garwood, M., Ugurbil, K., and Hu, X. (2002). Zoomed functional imaging in the human brain at 7
Tesla with simultaneous high spatial and high temporal resolution. Neuroimage, 17(1):272–86.

Pouget, A. and Sejnowski, T. J. (1997). A new view of hemineglect based on the response properties
of parietal neurones. Philos Trans R Soc Lond, B, Biol Sci, 352(1360):1449–59.

Prime, S. L., Niemeier, M., and Crawford, J. D. (2006). Transsaccadic integration of visual features in
a line intersection task. Experimental brain research Experimentelle Hirnforschung Expérimentation
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