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A Small-Sample Story for a Large-Sample World

•The flood of data in astronomy is only just beginning.

• Such data open up new questions and raise new challenges.

•Nonparametric methods are well suited to these new problems.

– Cosmic Microwave Background (Genovese et al. 2004, Bryan et al. 2005)

– Galaxy Evolution (e.g., Rojas et al. 2006)

– Galaxy Spectra (work in progress)

– Dark Energy (e.g., Daly and Djorgovski 2004, 2005; and below)

• So, in this terabyte age, I want to illustrate this potential

with a data set of mere hundreds.
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Preliminaries

•The Expanding Universe

Scale factor a(t) indicates relative expansion of the universe.

(a(t0) = 1 where t0 is current age of universe.)

Redshift z is an observable shift in the wavelength of light from a distant object

that is induced by the expansion of the universe.

1 + z =
λobs

λemit

=
a(tobs)

a(temit)
.

Hubble parameter H(t) =
ȧ(t)

a(t)
. (H0 = H(t0) is the Hubble “constant”.)

•The Distance-Redshift Relation

The relationship between objects’ distances and redshifts contains fundamental

information about the Universe’s geometry.

Hubble’s Law, z = H0d, is reasonably accurate for small distances d.



Dark Energy

• Accelerating Expansion (Reiss et al. 2004, Perlmutter et al. 2004)

Type Ia supernovae can serve as a “standard candle”.

Observations of many supernovae reveal that the expansion of the universe is

accelerating.

This conclusion is supported by other, independent, measurements, including the

Cosmic Microwave Background (Spergel et al. 2003) and large-scale structure

(Verde et al. 2002).

• Einstein’s “mistake,” Cosmological Constant, and Vacuum Energy

•This raises several puzzles. What’s going on?

– Mistaken assumptions, models, or data analysis

– A failure of General Relativity

– Anthropic Selection

– Dark Energy



Dark Energy (cont’d)

•Dark Energy is a smoothly-distributed energy density that

dominates the universe (∼ 74% versus ∼ 4% for baryonic matter)

and provides a negative pressure acting in opposition to gravity.

•What does the acceleration imply about dark energy?

Let ρ = ρmatter + ρradiation + ρDE + · · · be the total energy density in the universe.

Friedmann equation:

H2(t) =

(
ȧ(t)

a(t)

)2

=
8πG

3
ρ − κ

a2(t)

or equivalently,

ȧ2 =
8πG

3
a2ρ − κ.

Acceleration implies that a2ρ must increase.

Neither matter (ρmatter ∝ a−3) nor radiation (ρradiation ∝ a−4) can do this.

A cosmological constant (ρDE ∝ a0) could.



Dark Energy (cont’d)

•How do we quantify dark energy?

We can attempt to make inferences about ρ directly.

Alternatively, we can look at the equation of state (cf. ideal gas law).

Let pDE and ρDE be the pressure and energy density of dark energy,

then the equation of state w relates these by

pDE = wρDE.

For a cosmological constant, w = −1.

Work = −pDE∆V

∆Energy = ρDE∆V

=⇒ pDE = −ρDE



Dark Energy (cont’d)

•The supernova data give us a way to infer the equation of state

Roughly, we get

Yi = r(zi) + σiεi, i = 1, . . . , n,

where r is a measure of distance at each redshift zi. Then,

w(z) =
H2

0ΩM (1 + z)3 + 2
3

r′′(z)

(r′(z))3

H2
0ΩM (1 + z)3 − 1

(r′(z))2

≡ T (r′, r′′).
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Nonparametric Inference

Goal: make sharp inferences about unknown functions with a

minimum of assumptions.

Constructing good estimators is important, but an accurate

assessment of uncertainty is critical.

Why use nonparametric methods?

1. When we don’t have a well-justified parametric (finite-dimensional) model for

the object of interest.

2. When we have a well-justified parametric model but have enough data to go

after even more detail.

3. When we can do as well (or better) more simply.

4. As a way of assessing sensitivity to model assumptions.



Aside: What’s in a name?

The term “nonparametric” is unfortunate, although now firmly

established.

•There is a parameter in these models – the unknown function.

• Loosely speaking, the contrast between nonparametric and

parametric is an infinite-dimensinoal parameter versus a finite-

dimensional parameter.

•We have only n data. But with a nonparametric analysis, the

dimension of the fit grows with n; in a parametric analysis, it is

fixed for all n.

•These methods go beyond the rank-based testing of classical

nonparametric statistics.



The Nonparametric Regression Problem

Observe data (Xi, Yi) for i = 1, . . . , n where

Yi = f(Xi) + εi,

where E(εi) = 0 and the Xis can be fixed (xi) or random.

Leading cases: 1. xi = i/n and Cov(ε) ≡ Σ = σ2I.

2. Xi iid g and Cov(ε) ≡ Σ = σ2I.

Key Assumption: f ∈ F for some infinite dimensional space F .

Examples

1. Sobolev: F ≡ Wp(C) =
{
f :

∫
|f |2 < ∞ and

∫
|f (p)|2 ≤ C2

}

2. Lipschitz: F ≡ H(A) = {f : |f(x) − f(y)| ≤ A|x − y|, for all x, y}

Goal: Make inferences about f or about specific features of f .



Variants of the Problem

• Inference for Derivatives of f

• Estimating Variance functions

• Regression in High dimensions

• Inferences about specific

functionals of f
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Related Problems:

– Density Estimation

– Spectral Density Estimation



Rate-Optimal Estimators

Choose a performance measure, or risk function, e.g.,

R(f̂ , f) = E
∫
(f̂ − f)2 or R(f̂ , f) = E|f̂(x0) − f(x0)|2)

Want f̂ that minimizes worst-case risk over F (minimax).

But typically must settle for achieving the optimal minimax rate

of convergence rn:

inf
f̂n

sup
f∈F

R(f̂n, f) � rn

In infinite-dimensional problems, rn
√

n → ∞.

For example, rn = n
− 2p

2p+1 on Wp.

Rate-optimal estimators exist for a wide variety of spaces

and risk functions.



Adaptive Estimators

It’s unsatisfying to depend too strongly on intangible assumptions

such as whether f ∈ Wp(C) or f ∈ H(A).

Instead, we want procedures to adapt to the unknown smoothness.

For example, f̂n is a (rate) adaptive procedure over the Wp spaces

if when f ∈ Wp

f̂n → f at rate n−2p/2p+1

without knowing p.

Rate adaptive estimators exist over a variety of function families and

over a range of norms (or semi-norms).

Adaptive confidence sets?? Limited at best.



Inference Not So Easy

Using a rate-optimal smoothing parameter gives

bias2 ≈ var.

Loosely, if f̃ = Ef̂ and s =
√

Var f̂ , then

f̂ − f

s
=

f̂ − f̃

s
+

f̃ − f

s
≈ N(0, 1) +

bias√
var

.

So, “f̂ ± 2s” undercovers.

Two common solutions in the literature:

– Bias Correction: Shift confidence set by estimated bias.

– Undersmoothing: Smooth so that var dominates bias2.
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Derivative Estimation as an Inverse Problem

We can think of derivative estimation as an ill-posed inverse problem.

Suppose we have data

Yi = r(zi) + σiεi

and want to make inferences about f ≡ r′. Then we can write (in

vector form)

Y = Kf + Σ1/2ε

where the operator K = (K1, . . . , Kn) maps functions to R
n and

where Ki =
∫ zi
0 .

Create an orthonormal basis φ1, . . . , φn from the eigenfunctions of

K∗K with associated eigenvalues λ1 ≥ · · · ≥ λn ≥ 0.

Here, K∗ is the adjoint of K given by

K∗u =
n∑

i=1

ui1[0,zi]
.



Derivative Estimation (cont’d)

Then,

f =
n∑

j=1

βjφj + f⊥

=
n∑

j=1

λ
−1/2
j 〈uj, Kf〉φj + f⊥,

where uj = Kφj/‖Kφj‖. The f⊥ component is not estimable.

Using an optimal shrinkage scheme,

MSE ≈
n∑

j=1

min(β2
j , λ−1

j τ2
j ),

where τ2
j =

∑
k u2

jkσ
2
k.

Large components at high order are bad news!



Derivative Estimation (cont’d)

Associated Eigenvalues (as − log10 λj) for the Supernova Data
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Inference for the Equation of State
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Two approaches: Direct testing and nonparametric methods.



Inference (cont’d): Direct Testing

• Let Q(z) be a fixed function, such as Q(z) ≡ −1.

Then, the null hypothesis H0 : w = Q corresponds to the set of r′

solving a differential equation:

2

3
(1+z)r′′(z)+r′(z)(1+Q(z))−(r′(z))3Q(z)H2

0Ωm(1+z)3 = 0.

This can be solved.

•The result is a family of solutions parameterized by r′(0).

• Invert goodness of fit tests to generate a confidence set of those

solutions in the family that are consistent with the data.

Account for the uncertainty in H2
0Ωm.

• Easily generalizes to any finite-dimensional family of Q(z)s.



Inference (cont’d): Nonparametric Methods

•Orthonormal basis expansion (singular functions or wavelet-

vaguelete) or local polynomial regression

•Double reflection drastically reduces boundary bias in this problem.

•Minimize an unbiased estimate of risk R̂ to select tuning parameters

• Confidence bands via tube formula (Sun and Loader 1994).

f̂ ± c se(f̂)

where, c solves

α = 2(1 − Φ(c)) + κφ(c),

where Φ and φ are standard Gaussian cdf and density, respectively,

and κ is a constant that depends on the procedure but not on f .

•Must account for bias. Commonly used methods of bias

adjustment/estimation fail in simulations.

Use a global estimate of bias to dilate the bands.



Inference (cont’d): Nonparametric Methods

Issue: What should the target of inference be?

•We can target the effective density ρDE/ρcrit or

the equation of state w.

•The effective density can be estimated more precisely, but inference

is harder: comparing growth rates of various components.

•The equation of state is harder to estimate (nonlinear functional

of two derivatives), but inference is relatively straightforward

(w > −1?).

•This is an empirical question that depends on accurate assessment

of uncertainties: that is, good confidence sets.



Results

•Direct Testing: marginal rejection of H0 : w = −1 with p ≈ 0.006.

But a 12% increase in standard errors eliminates the effect.

•Nonparametric methods: All the methods generally agree and

give results consistent with what we would expect.

Precision of the estimates is low at high redshift.

Best fitting r′ for w = −1 just outside of the confidence bands

over small range.



Results (cont’d)

r̂′ with confidence bands (r̂′ within band; r̂′0 exits band)
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Results (cont’d)

r̂ from nonparametric and best fitting r̂0 from w = −1 solution.
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Take-Home Points

•Nonparametric methods can contribute to fundamental problems

in cosmology and astrophysics.

•With the large data sets coming through the pipeline, we can

eschew simpler parameterizations and go after the basic physics

directly.

•The critical statistical problems focus on constructing inferences for

the unknown function (e.g., confidence sets) and for complicated

functionals.



Results (cont’d)

ρ̂DE/ρcrit from nonparametric and best fitting from w = −1 solution.

0.0 0.5 1.0 1.5

10
00

0
20

00
0

30
00

0
40

00
0

z


