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We present a method for making sharp statistical inferences about the dark en-

ergy equation of state from observations of Type Ia Supernovae. The method is

based on a new formula for the co-moving distance in terms of the equation of

state. This work stands in contrast to current inferential methods that involve

estimating derivatives of the co-moving distance as a function of redshift; as

we discuss, derivative estimation precludes sharp inference. Using our result,

we evaluate the strength of statistical evidence for various competing models

of dark energy. We find that with the currently available Type Ia SNe data,

it is not possible to distinguish statistically among popular dark-energy mod-

1



els. In particular, there is no support in the data for rejecting a cosmological

constant. A sample size increase by a factor of 10 would likely be sufficient to

overcome this problem. Such data should become available with NASA’s Joint

Dark Energy Mission.

Introduction. Observations of Type Ia supernovae (SNe) provide the strongest available evi-

dence that the expansion of the universe is accelerating (1, 2). One explanation for this apparent

acceleration is the presence in the universe of dark energy, energy of unknown composition

that has negative pressure PDE and a density ρDE comprising approximately 73% of the critical

density in the present epoch. Support for the existence of dark energy also comes from studies

of the Cosmic Microwave Background and Large Scale Structure (3).

In this paper, we follow current standard practice and assume a homogeneous, isotropic, and

spatially flat universe where matter is non-relativistic and where gravity is described by general

relativity with the Friedmann-Robertson-Walker metric. (Specifically, we do not examine an

alternative to the dark energy hypothesis, modified gravity, for which some of these assumptions

do not hold; see, e.g., 4.) Under these assumptions, we can express the dark energy pressure

PDE and density ρDE in terms of the co-moving distance r as follows:

PDE(z) = −ρcrit

(

1

H0r′(z)

)2 (

1 + (1 + z)
2r′′(z)

3r′(z)

)

,

and

ρDE(z) = ρcrit





(

1

H0r′(z)

)2

− Ωm(1 + z)3



 ,

where ρcrit is the current critical density, H0 is the Hubble constant, Ωm is the fractional contri-

bution of matter to ρcrit (5), and ′ denotes differentiation of r with respect to z. Taking the ratio

of these functions yields the so-called “reconstruction” equation of state parameter

w(z) =
H2

0Ωm(1 + z)3 + 2
3
(1 + z)r′′(z)/(r′(z))3

H2
0Ωm(1 + z)3 − 1/(r′(z))2

− 1. (EQ :: W )

2



Several important cosmological models can be expressed in terms ofw, including the following:

the cosmological constant (w(z) ≡ −1); frustrated cosmic strings or domain walls (w(z) ≡

−1/3 or w(z) ≡ −2/3; 6); various quintessence models (freezing w ′(z) > 0, thawing w′(z) <

0; 7, 8), and models which allow w(0) < −1, such as Cardassian models (9) and phantom dark

energy (10).

Two basic approaches have been used in the literature for distinguishing among compet-

ing cosmological models. The first tries to estimate the dimensionless dark energy density

ρDE(z)/ρcrit using polynomial or nonparametric (23) models for r and r ′, typically in the form

of piecewise functions where the number of breakpoints acts as a smoothing parameter (11).

The second approach tries to estimate w using nonparametric models for r, r ′, and r′′ (12). The

advantage of the former approach is that it requires estimation of only one derivative of r; the

advantage of the latter approach is that the resulting estimator can be more easily interpreted in

terms of the competing models.

All existing approaches require the estimation of at least one derivative, and derivative es-

timation is difficult. Because integration is a smoothing operation, it obscures high frequency

structure, making detailed inferences about the derivative imprecise. This problem becomes

more severe for higher-order derivatives. (See the Supplementary Material for a more detailed

explanation.)

The implication for estimating the dark-energy equation of state parameter w using deriva-

tives is the following. If we use parametric models, the estimates are guaranteed to be exquisitely

sensitive to the parametric assumptions. If we use nonparametric methods, the estimates are

guaranteed to have high variance, high bias, or both.

In this paper, we show how to avoid these difficulties, thus leading to a more precise sta-

tistical procedure. Our approach supports both parametric and non-parametric models for the

equation of state, enables testing of specific hypotheses, and allows construction of confidence
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bands for w(z). We use this method to address the following question: are the existing SNe

data sufficient to distinguish statistically among currently competing models for w(z) (e.g., to

test w ≡ −1 versus w 6≡ −1)?

Type Ia SNe Data. We analyze data for 192 SNe Ia from Davis et al. (14). The data consist

of i) redshifts z, ii) distance moduli µ = m−M , where m and M are the apparent and absolute

magnitudes of each supernova, and iii) standard errors τ =
√

τ 2
µ + τ 2

v for 192 SNe Ia, where τµ

is the intrinsic uncertainty in the distance modulus and τv is an estimate of the peculiar velocity

of the supernova relative to a local standard of rest. (We ignore the uncertainties of the redshift

estimates, which are generally less than 1%.)

Let Ui and zi denote the observed distance modulus and redshift, respectively, for the ith

supernova, i = 1, . . . , n, where n = 192. We model Ui as Gaussian with mean µ(zi); that is,

Ui = µ(zi) + τiεi, (EQ :: modulusdata)

where the εis are assumed independent, mean zero, Gaussian noise terms with unit variance and

the τis are the given standard errors of the distance moduli measurements. We expresss these in

terms of co-moving distance (assuming a flat universe) by transforming as follows:

1

c(1 + zi)
10(Ui−25)/5 = r(zi) · 10(τi/5)εi , (EQ :: transform)

where c is the speed of light. Thus, letting Yi denote the log10 of the left hand side of (EQ::transform),

we have

Yi = log10 r(zi) + σiεi, i = 1, . . . , n, (EQ :: DATA)

where σi = τi/5. Figure FIG::DATA shows Y plotted against log10(z) with associated error

bars. We thus call r “observable” because it can be directly estimated from the observed data.
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Deriving Co-Moving Distance from the Equation of State

In this section, we re-express the relationship between co-moving distance r and the equa-

tion of state w to support building more precise statistical models. Specifically, we give ex-

plicit analytic expressions for the co-moving distance r (and the deceleration function q(z) =

−1 − (1 + z)r′′(z)/r′(z)) under various representations for w. With (EQ::DATA), this gives a

likelihood directly in w; we show how to use this for parametric or nonparametric inferences in

the next section.

Equation (EQ::W) produces a differential equation for r in terms of w that has a two-

parameter family of solutions. The boundary conditions r(0) = 0 and r ′(0) = 1/H0 produce a

unique solution

r(z) = H−1
0

∫ z

0
ds
[

Ωm(1 + s)3 + (1 − Ωm)(1 + s)3 e−3
∫ s

0

−w(u)
1+u

du
]−

1
2

. (EQ :: R)

From this expression, we can also solve for q:

q(z) =
1

2
+

3

2

(1 − Ωm)w(z)

(1 − Ωm) + Ωme
3
∫ z

0

−w(s)
1+s

ds
(EQ :: Q)

(A related expressions for the decleration parameter r in terms of q is given in equations

EQ::R::Q in the Supplementary Material.) The main use of these expressions is to translate

a model for the unobservable w into the observable r.

Equations (EQ::R) and (EQ::Q) have several properties that are valuable for statistical infer-

ence as we will show below. First, note that for any w, r′(z) > 0, so r is a monotone increasing

function of z with r(0) = 0. In fact, (1 + z)−3/2/H0 ≤ r′(z) ≤ (1 + z)−3/2/
√

H2
0Ωm. Second,

r is monotone decreasing in w for each fixed value of H0 and Ωm. Specifically, if w1 and w2

are two candidate equations of state with corresponding co-moving distance fucntions r1 and

r2, and if w2(z) ≥ w1(z) for all z ≥ 0, then r2(z) ≤ r1(z) for all z ≥ 0. Similarly, q is

monotone increasing in w; w2(z) ≥ w1(z) for all z ≥ 0 implies that q2(z) ≥ q1(z) for all
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z ≥ 0. Third, as shown in the Supplementary material, for r to be concave it is sufficient that

w(z) ≥ −1/(1−Ωm) for all z ≥ 0. Under mild smoothness assumptions on w, the concavity of

r holds more broadly. Fourth, in both equations, taking w ≡ 0 is equivalent to taking Ωm = 1.

For any specific choice of w, Ωm, and H0, it is straightforward to evaluate r numerically.

ATTN specific parameterizations For instance, under a constant w model w ≡ w0, equation

(EQ::R) reduces to

r(z) = H−1
0

∫ z

0
ds
[

Ωm(1 + s)3 + (1 − Ωm)(1 + s)3(1+w0)
]−

1
2 . (EQ :: RWmone)

More generally, expanding w(z) = −∑

j βjψj(z) in a (not-necessarily orthonormal) basis

ψ0, ψ1, . . . yields

r(z) = H−1
0

∫ z

0
ds
[

Ωm(1 + s)3 + (1 − Ωm)(1 + s)3 e
−3
∑

j
βj ψ̃j(s)

]−
1
2

, (EQ :: R :: Basis)

where ψ̃j(s) =
∫ s
0 ψj(u)/(1 + u)du. Taking the expansion to be finite gives three important

special cases:

1. Polynomial in z: ψj(z) = zj , j = 0, . . . , d, giving

r(z) = H−1
0

∫ z

0
ds
[

Ωm(1 + s)3 + (1 − Ωm)(1 + s)3(1−α0)e−3
∑d

j=1
(−1)jαj s

j/j
]−

1
2

.

(EQ :: R :: POLY )

where αk =
∑d
j=k(−1)jβj for k = 0, . . . , d.

2. Polynomial in the scale factor a: ψj(z) = (1 + z)−j , j = 0, . . . , d, giving

r(z) = H−1
0

∫ z

0
ds
[

Ωm(1 + s)3 + (1 − Ωm)(1 + s)3(1−β0)e
3
∑d

j=1
βj((1+z)−j−1)/j

]−
1
2

.

(EQ :: R :: APOLY )

3. Piecewise constant: ψj(z) = 1(sj ,sj+1](z) for j = 0, . . . , K − 1, where 0 = s0 < s1 <

· · · < sK are breakpoints for K fixed bins and where 1(sj ,sj+1](z) is 1 if sj < z ≤ sj+1
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and 0 otherwise. In this case, equation (EQ::R) becomes

r(z) =
∫ z

0
ds

[

H2
0Ωm(1 + s)3

(

1 − e
−3
∑J(s)

j=1
βj log

(

1+sj

1+sj−1

)

e
−3βJ(s)+1 log

(

1+s
1+sJ(s)

)

)

+
1

θ2

]−
1
2

,

(EQ :: R :: PC)

where J(s) = max{0 ≤ j ≤ K : sj ≤ s}. Despite the discontinuities in w, this

expression is a smooth function of the β parameters.

Extension to other bases – such as B-splines, orthogonal polynomials, and wavelets – is straight-

forward.

Combined with equation (EQ::DATA), each of these expressions produces a likelihood for

w, H0, and Ωm. Although nonlinear, these likelihoods are well-behaved for optimiztion pur-

poses, and weighted, nonlinear least-squares is computationally efficient in practice. Good es-

timates of the coefficients can be obtained for a wide variety of models, which in turn supports

both parametric and nonparametric inferences about w.

Optimal Statistical Procedures

We distinguish two uses of the word model in this paper. A cosmological model for dark energy

is a set of assumptions about the underlying physics that gives rise to a particular form of the

equation of state. A statistical model for w (or q) is a family of probability distributions for

the data indexed (at least) by a parameterization of w (or q). If this parameterization is finite

dimensional, the model is parametric; otherwise, the model is nonparametric (23). We consider

statistical models whose stochastic component is specified by equation (EQ::DATA); each such

model is then determined by the parameters H0 and Ωm and by a specific representation of w.

A particular cosmological model can be analyzed under a particular statistical model, but

the scope of the inferences is limited by the viability and flexibility of the assumptions made.
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Hypothesis Testing. A common method for distinguishing among models of dark energy is

to first estimate the equation of state and use this estimate to test hypotheses about cosmological

models. This approach has several disadvantages, including that the power of the test depends

on having a good estimator and that it requires accurate standard errors for the entire function.

Equation (EQ::R), however, allows a broad range of tests to be performed directly, without the

unnecessary baggage of a preliminary estimator.

Here we consider null hypotheses of the following forms

A. Simple equalities for w: w = w0,

B. Inequalities for w: w0 ≤ w ≤ w1,

C. Inequalities for w′: w′
0 ≤ w′ ≤ w′

1,

D. Inclusion: w ∈ V for a linear space V , and

and various intersections of these, where w0, w1, w′
0, and w′

1 denote various fixed functions, not

necessarily constant. (We use the inequality w ≤ w0 to mean that w(z) ≤ w0(z) for all z, and

similarly for other inequalities between functions.)

Testing such hypotheses gives direct tests of various cosmological models. The null hy-

pothesis that the cosmological constant model holds, for example, translates to a simple null

hypothesis with w0 = −1. Quintessence solutions lead to a variety of constraints on w and w ′

that can be tested by combining hypotheses that are inequalities for w and for w ′. For instance,

thawing solutions satisfy

1 + w ≤ dw

d ln a
≤ 3(1 + w), (EQ :: THAW :: CON :: lna)

and freezing solutions satisfy

3w(1 + w) ≤ dw

d ln a
≤ 0.2w(1 + w), (EQ :: FREEZE :: CON :: lna)
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when −1 ≤ w ≤ −0.8 (7), where a is the scale factor. As we show in the Supplementary

Material, these bounds can be re-expressed for w in the same range as

1 + w(0)

(1 + z)3
− 1 ≤ w(z) ≤ 1 + w(0)

1 + z
− 1, (EQ :: THAW :: CON)

and

w(0)

(1 + z)3 + w(0) ((1 + z)3 − 1)
≤ w(z) ≤ w(0)

(1 + z)0.2 + w(0) ((1 + z)0.2 − 1)
,

(EQ :: FREEZE :: CON)

where w(0) is a free parameter.

The strategy underlying our testing procedure is to use equation (EQ::R) to translate hy-

potheses about w into hypotheses about r. Thus, we can test any hypothesis that translates into

a manageable form. The procedure is as follows.

0. Select a small 0 < α < 1.

1. Construct a 1 − α confidence set C for the unknown vector (r(z1), . . . , r(zn)).

2. Construct the set R0 of vectors (r0(z1), . . . , r0(zn)) where r0 is a co-moving distance

function produced by an equation of state consistent with the null hypothesis

3. Reject the null hypothesis if C ∩R0 = ∅.

In practice, the sets in Steps 1 and 2 need not be constructed explicitly, and the procedure can

be made computationally efficient for a broad range of hypotheses. See the Supplementary

Material.

We use our procedure to define a test that is independent of a particular parameterization of

w. We do take advantage of the prior information in equation (EQ::R) described in the previous

section (see equation EQ::R and equation 12 in the Supplementary Material). One way to
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define the confidence set C is the set of vectors for which a standard chi-squared goodness-

of-fit test (16) does not reject the null hypothesis. In light of equation (EQ::DATA), the chi-

squared goodness-of-fit ball gives a confidence set for (log10(r(z1)), . . . , log10(r(z1))), which

is easily transformed into a confidence set for (r(z1)), . . . , r(z1)). As the number of data grows,

however, the chi-squared confidence sets become unduly conservative, reducing the power of

the test. So, we also use alternative confidence set procedures that achieves optimal large-

sample performance (17). The resulting confidence sets are smaller giving the test higher power.

Further details are given in the Supplementary Material.

Our procedure works also under more restrictive assumptions about the form of w, with

correspondingly sharper results as the assumptions grow stronger. For this, the confidence

set C is constructed using the assumed parameterization. The resulting test will have higher

power than the nonparametric test when the assumed parameterization holds. Note, however,

that the validity of any inferences under a specific parameterization depends strongly on the

parameterization being accurate.

Step 2 of the procedure depends specifically on the hypothesis being tested. We now derive

the sets R0 for null hypotheses of the forms listed above. Let M denote the set of vectors

(r(z1), . . . , r(zn)) for functions r that meet the a priori conditions that the co-moving distance

must satisfy.

A. Under a simple null hypothesis w = w0 equation (EQ::R) generates a two-parameter

family of functions r0 as H0 and Ωm vary; R0 is the set of vectors (r0(z1), . . . , r0(zn)) for

r0 in this family.

B. Under the null hypothesis, w ≥ w0, equation (EQ::R) shows that, for fixed H0 and Ωm,

r ≤ r0, where r0 is produced in (EQ::R) by w = w0 for the given value of H0 and Ωm.

Again, varying H0 and Ωm produces a two-parameter family of functions r0. R0 is the
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set of vectors (r1, . . . , rn) ∈ M such that r1 ≥ r0(z1), . . ., rn ≥ r0(zn) for some r0

in the family. The restriction to M sharpens the results. It is not strictly necessary, but

because equation (EQ::R) produces functions in M, it is an improvement that is virtually

cost free. The other direction of inequality is handled similarly, using the monotonicity

of r in w.

C. Null hypotheses of the form w′ ≥ w′
0 can be handled by re-expressing the exponent in

equation (EQ::R). Integrating by parts and writing w(s) = w(0)+
∫ s
0 w

′(u) du yields that

∫ s

0

w(u)

1 + u
du = w(0) log(1 + s) +

∫ s

0
w′(u) (log(1 + s) − log(1 + u)) du.

The second term in the right-hand side integrand is non-negative, so w ′ ≥ w′
0 implies,

for fixed H0, Ωm, and w(0), that r ≤ r0, where r0 is the right-hand side of equation

(EQ::R) corresponding to (w(0), w′
0, H0,Ωm). Varying H0, Ωm, and w(0) produces a

three-parameter family of functions, and as before, R0 is the set of vectors in M whose

compontents are at least as big everywhere as some function in this family. Other inequal-

ities in w′ are handled similarly.

D. The null hypothesis that w lies in some linear space of functions V is useful primarily

to test the goodness of fit of statistical models for w. We select an arbitrary basis for V

and form a dim(V ) + 1 dimensional family of functions corresponding to each (H0,Ωm)

and each vector of coefficients in the basis expansion. R0 is the set of vectors produced

by these functions evaluated at z1, . . . , zn. See equation (EQ::R::Basis). This case is

handled in practice by numerical optimization and thus works best for low to moderate

dimensional spaces. It is not necessary to restrict to a linear space, but that is the best

behaved case numerically.

Note that this same approach can be used to test hypotheses about the deceleration function
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q(z) = − (1 + (1 + z)r′′(z)/r′(z)). In particular, the null hypothesis that the universe is decel-

erating because of an absence of dark energy can be expressed asw = 0 or equivalently, Ωm = 1

or q = 1/2. We call this the weakly non-accelerating hypothesis (no dark energy). In contrast,

a non-accelerating universe corresponds to q ≤ 0; we call this the strongly non-accelerating hy-

pothesis. Using the relationship derived in the Supplementary Material (see equation EQ::R::Q),

the weak hypothesis corresponds to the null hypothesis r = H−1
0 (2 − 2(1 + z)−1/2) and the

strong hypothesis corresponds to the null hypothesis r ≥ H−1
0 log(1 + z). Both generate a one-

parameter family and corresponding R0. One sided inequality hypotheses of this form (r ≥ r0)

require an extra step because by taking H0 large enough, we can make the lower bound as small

as possible and the null trivially true. In this case, we use a priori information about H0 with a

suitable adjustment to the confidence level.

As described, the testing procedure given above is independent of how we parameterize w,

which gives a flexible and powerful technique. The resulting inferences are essentially as good

as possible without stronger assumptions about the forms of w or r. We turn next to consider

inferences for w under more restrictive parameterizations.

Model Fitting and Selection. Two basic methods are commonly used to estimate w from

supernova data. In the first, the data are smoothed to estimate r ′ and r′′, and the corresponding

estimates of these functions are plugged into equation (EQ::W) to obtain an estimate of w. In

the second, w is assumed to be in a parametric family w(z;ψ) and the previous estimator, ŵ,

is computed. Then an estimator of ψ, ψ̂, is chosen to minimize the distance (e.g., chi-squared)

between ŵ(z) and w(z;ψ).

We propose a third method. Given a model for w, use equation (EQ::R) to convert it into

an explicit model for r and then fit that to the data. For example, if w is a polynomial with

unknown coefficients β, then equation (EQ::R::POLY) shows an explicit nonlinear model for r.
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A similar expression can be derived for any basis expansion (see Supplementary Material). We

fit a weighted least-squares nonlinear regression to r, which produces estimates and standard

errors for the coefficients in the model, and in turn for w and q.

The latter method has the advantage of not requiring intermediate estimates of the deriva-

tives. And indeed, in terms of statistical accuracy, the latter method is guaranteed to perform

better than the other two. This is true because smoothing to get the derivatives introduces un-

necessary additional variability into the procedure.

We consider three families of nested statistical models for w.

I. Many investigators have studied the dark energy equation of state using a linear model

w(z) = −(β0 + β1z) (19). This family contains the constant models (e.g., cosmological

constant has β0 = 1) but also allows inferences about more complicated cosmological

models listed above. It can be extended to a nested family of polynomial models w(z) =

−∑D
d=0 βdPd(z) for D ≥ 0, where P0, . . . , PD are linearly independent polynomials of

degree 0, . . . , D respectively.

II. We also consider models in which w is a polynomial in the scale factor a. These take the

form w(z) = −∑D
d=0 βd(1 + z)−d, for D ≥ 0.

III. It is also common to model w as in equation (EQ::W::PC) with a piecewise constant

function (11). For large enough K and suitably spread breakpoints, such functions ap-

proximate any square integrable function on an interval arbitrarily well. If Bk is the set

of breakpoints for the kth order piecewise constant model, then taking B1 ⊂ B2 ⊂ · · ·

yields a nested family of models for w as K increases.

All three families contain the constantw model, corresponding toD = 0 orK = 0 respectively.

If r(z; β, θ) denotes the co-moving distance predicted by a model with parameters β and

θ, then following equation (EQ::DATA), we fit the Yis to log10 r(zi; β, θ)’s by non-linear least

13



squares. We choose the breakpoints in the piecewise constant model to balance the total weight
∑

1/σ2
i within each bin, although it makes little difference if one instead balances sample size.

Given a family of parameterizations for w, the next question becomes which to use. Models

with too many parameters provide a better apparent fit but estimates of the parameters have

high variance; models with too few parameters give estimates with low variance but with bias

from the misspecified model. With a two nested parameterizations for w, such as a constant

model and the linear model, a likelihood ratio test can be used to select between them. For

more general inferences, it is useful to select a model from a larger collection. Here the goal

is to select a model that best balances bias and variance. Many good methods are available;

we use BIC (Bayesian Information Criterion, also called the Schwarz criterion 24) as it is both

simple and effective.

Confidence Bands. For much the same reasons as just discussed, confidence bands for w (and

q) based on smoothed estimates of r′ and r′′ are necessarily wide (20). Better confidence bands

can be obtained by applying the bootstrap (21) to the fitted models. We generate confidence

intervals for the parameters in the model by resampling residuals from the model fit, renormal-

ized to have appropriate variance. The Supplementary Material gives further details and shows

how to construct confidence bands for w and q under a particular model. It is common practice

to use the confidence bands corresponding to the model selected by BIC. These are straightfor-

ward and accurate when the selected model holds. But they necessarily optimistic because the

bands do not account for the variation in the model selection process or for the potential bias

induced by choosing too simple a model. Nonparametric bands for w and q can be constructed

using the methods in this paper but requires somewhat intensive nonlinear optimization. The

width of these bands depends strongly on the level of smoothness one assumes, but there is

little a priori guidance in this choice. As a compromise, we use the confidence bands from an
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undersmoothed model (moderate order B-spline expansion).

Results

Testing Cosmological Models. We test seven cosmological models using the procedure de-

scribed earlier, independently of any parameterization for w. Three models (cosmological con-

stant, frustrated cosmic strings, and domain walls), with a simple null hypothesis of the form

w = w0. The two quintessence models (thawing and freezing solutions respectively) were tested

with inequality null hypotheses given by equations (EQ::THAW::CON) and (EQ::FREEZE::CON)

intersected with the condition that −1 ≤ w ≤ −0.8. (We also tested more expansive versions of

these hypotheses using i. equations (EQ::THAW::CON) and (EQ::FREEZE::CON) alone and

ii. the hypothesis w′ ≥ 0 and w′ ≤ 0 intersected with the condition that −1 ≤ w ≤ −0.8. But

being strict supersets of the original null hypotheses these are less likely to reject.) We tested

both the weakly (no dark energy) and strongly non-accelerating universe hypotheses. For the

latter, q ≤ 0, we used an apriori confidence interval for H0 72 ± 8km/s/Mpc (ATTN ref). Fi-

nally, we tested the inclusion hypothesis that w is a constant, possibly different from -1. Table

1 shows the results of these tests at various significance levels. The no dark energy model is

clearly inconsistent with the data (p-value p ≈ 0), but none of the other models is rejected at

the 13% level. Note in particular that the cosmological constant is consistent with the data.

A false null hypotheses might fail to be rejected because the power of the test is too low.

Because our procedure has essentially as much power as possible given the available informa-

tion about w, the only ways to improve power are either to make stronger assumptions about

the form of w or to get more data. We argue that the latter is necessary. Table 2 shows the

results of the same tests assuming a linear form w(z) = −(β0 + β1z), which is the simplest

nontrivial parameterization and a correspondingly smaller confidence set. The pattern of rejec-

tions is basically the same. and in particular, there is insufficient evidence to move away from
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a cosmological constant. Of course, there is no reason to believe the linear form for w, and if it

is false, inferences under that assumption can be misleading. But this shows that strengthening

the assumptions is not enough to overcome the lack of information in the data.

Model Rejected At Level

32% 13% 5% 1%
Cosmological Constant yes no no no

Frustrated Cosmic Strings yes yes yes no
Domain Walls yes no no no

Nonaccelerating yes no no no
Quintessence Thawing no no no no
Quintessence Freezing no no no no

Constant w no no no no

Table 1. Results of nonparametric hypothesis tests for various cos-
mological models of w. The significance levels correspond to 1,
1.5, 2, and 2.5 standard deviations respectively from a Gaussian
mean.

Model Rejected At Level

32% 13% 5% 1%
Cosmological Constant yes no no no

Frustrated Cosmic Strings yes yes yes no
Domain Walls yes no no no

Nonaccelerating yes no no no
Quintessence Thawing no no no no
Quintessence Freezing no no no no

Constant w no no no no

Table 2. Results of hypothesis tests for various cosmological mod-
els of w assuming a linear parameterization for w in z.

Fitted Models for the Equation of State. In all three families of models we consider (I,II,

and III above), likelihood ratio tests between the constant model and the higher-order models in

the family fails to reject with pvalue p > 0.85. In all three cases, BIC is monotone increasing

with the constant model the clear choice. A likelihood ratio test of the cosmological constant

versus the constant w model fails to reject with pvalue p = 0.137. Figure FIG::LLSURF shows
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the log-likelihood surface for the constant w model fit, with the bootstrap confidence interval

for β0 overlayed. Although the cosmological constant cannot be rejected at the 87% level, it is

suggestively on the boundary or rejection.

Figure FIG::W::FITS shows the fitted w for the constant, linear, piecewise constant K = 2,

and linear in a models along with their associated in model confidence bands. Already these

confidence bands are wide enough that we cannot rule out many of the competing cosmo-

logical models, and these are still potentially optimistic. FIG::W::R overlays on the data the

co-moving distances derived from these fits; the differences between the fits are small relative

to measurement error. FIG::W::COMP shows the best fit W with compromise bands from the

undersmoothed model, which are wider still.

17



ATTN FIGURE

18



ATTN FIGURE

19



Possible Outliers. We note that two data points – supernovae d083 and 04D3gt – appear

suspect, although they cannot be conclusively eliminated. These two points consistently show

large residuals (< −4 in standard units), while the remaining residuals conform nicely to what

would be expected under the statistical model in equation (EQ::DATA). These two points also

appear to be influential on the fit. When they are dropped, constant w models have approxi-

mately the same fit, but higher order model fits change substantially, with a significant increase

in uncertainty for moderate to large z.

In Table 9 of Wood-Vasey et al. (14), supernova d083 has a chi-squared per degree of

freedom of 0.25, which is far in the lower tail of the distribution (left tail area < 3×10−4). This

might suggest that the error bars are too large. The distinguishing feature of supernova 04D3gt

is that it has the highest value of AV . Most of the extinction values are in the 0.1−−0.2 range,

but AV = 1.127 for this supernova. In addition, there is a discrepancy in the reported distance

modulus between the Reiss et al. silver sample, where µ = 42.22, and the Wood-Vasey value

of µ = 41.35. The data points for both these supernova are, at the very least, suspect.

The larger implication of these potential outliers for statistical inference about dark energy

is that the data being fit are subject to potential selection bias. If the selected subset of observa-

tions that “pass” to the inferential stage can have a significant effect on the fit, then that initial

screening and selection process should be incorporated into the statistical analysis. To treat

the screening and inference as separate stages fails to account for uncertainty in the screening

process and biases induced by the selection criteria.

The Need for More Data. A key question is whether current data are sufficient to resolve the

differences among interesting models for w and q. We argue here that the answer is no.

First, even under strong assumptions and with essentially optimal procedures, there is not

enough evidence to distinguish among interesting models. The cosmological constant model is
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suggestively on the boundary at the 13% level, but no conclusive differences are supported by

the data.

Second, we can use as a minimal criterion for resolvability the power of the likelihood ratio

test for distinguishing the cosmological constant model from a constant w model. With existing

standard errors, it is straightforward to compute this power by simulation through equations

(EQ::R) and (EQ::DATA). Table 3 shows the power of this test for various significance levels

and alternatives, all of which are low. Table 4 shows the power for distinguishing a constant w

model from a piecewise constant model with one breakpoint for a similar variety of alternatives,

which are substantially lower.

Third, an even more striking demonstration of model degeneracy is given by Figure FIG::DEGENERACY.

This shows two very different equations of state that give virtually indistinguishable fits to the

data, with a chi-squared deviation of 0.04. This example is driven primarily by uncertainty in

Ωm, which can be reduced using other (non-SNe) data. ATTN

ATTN TABLES 3 and 4 HERE

An important question follows: what new data will make it possible to distinguish among

interesting cosmological models or to establish conclusively that the cosmological constant

model is the best choice. Figure INFO::PERT plots the increase in Fisher information for β1 as

a function of z for both a linear and piecewise constant (K = 2) model, with the measurement

variance normalized out. Unsurprisingly, the greatest gains for resolving higher order structure

are obtained with new data at high redshift (and low noise level).

An alternative way to characterize what is needed is to find the factor by which measure-

ment errors must be reduced before the power to detect some higher order structure is above a

specified threshold. As with Tables 3 and 4 above, we compute the power to detect specific dif-

ferences in w with a likelhood ratio test comparing a constant w model to a piecewise constant

model with 2 breakpoints. We compute the power as a function of the standard error scaling
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and convert that into a required sample size. Table 5 gives the results. We find that a factor

of ATTN reduction in the standard errors of the original measurements is sufficient to achieve

power 0.9 to detect a difference of 0.25 between the two constant pieces at moderate redshift.

This translates to an increase in sample size of roughly a factor of 10. Such an increase should

become available with the launch of NASA’s Joint Dark Energy Mission (JDEM, 22). With that

amount of data, uncertainties are reduced enough that nontrivial inferences for w can be made.

ATTN TABLE 5 HERE
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Conclusion

This paper offers both good news and bad news about dark energy. The good news is that we

have shown how to estimate the dark energy equation of state from supernovae data precisely

and without the need to estimate derivatives. This allows us to directly test various cosmological

models without imposing strong assumptions about the form of w. It gives us a statistically

efficient method for estimating w and q. And it offers several methods for constructing rigorous

confidence bands for these functions. Moreover, our method places assumptions where they are

needed – namely, directly on w rather than on r, and there is no need for an initial estimate

of derivatives of r. These procedures are essentially as good as possible given the available

information about the form of w. Our approach supports both parametric and nonparametric

models for the equation of state, making it possible to incorporate prior information. Using this

approach, we were able to simply test a variety of competing models and firmly reject at least

one model.

The bad news, however, is that current supernova data do not yet provide tight enough in-

ferences to make nontrivial claims about w. We have shown that even with strong additional

assumptions the uncertainties are too large to reliably distinguish among most competing cos-

mological models. Although the results are suggestive, no conclusive differences from the

cosmological constant model are supported by the data. Models with higher order structure

for w exhibit large standard errors for the model parameters, and in more complicated models,

these variances would only grow.

On balance, the good news outweighs the bad. A sample size increase by roughly a factor of

ATTN would rule would likely be sufficient to distinguish among interesting hypotheses about

the equation of state. The upcoming JDEM mission and the proliferation of automated surveys

makes this a likely prospect in the near future, and when the data become available, the methods
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in this paper give the tools to produce sharp inferences.
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Supplementary Material

Why Derivative Estimation Is Hard. We represent derivative estimation as an ill-posed in-

verse problem. Suppose we have data of the form

Yi = f(zi) + σiεi,

where E(εi) = 0 and f is an unknown function in a nonparametric model. Suppose also we

want to make inferences about f ′. Then we can write

Y = Kf ′ + Σ1/2ε,

where Y = (Y1, . . . , Yn), K = (K1, . . . , Kn), Ki =
∫ zi

0 is an integral operator, and Σ1/2 =

diag(σ1, . . . , σn). We would like to recover f ′ from K−1Y , but because K is a smoothing

operator, it obscures high-frequency structure in f . (Put another way, the singular values of K

decrease rapidly, making K an ill-conditioned operator.) This leads to huge variance inflation.

More formally, the eigenfunctions of the operator K∗K produce an orthonormal basis

φ1, . . . , φn with associated eigenvalues λ1 ≥ · · · ≥ λn ≥ 0. Here, K∗ is the adjoint of K

given by

K∗u =
n
∑

i=1

ui1[0,zi],

for any vector u = (u1, . . . , un). Then,

f ′ =
n
∑

j=1

βjφj + f ′

⊥ =
n
∑

j=1

λ−1
j 〈Kφj, Kf〉φj + f ′

⊥ =
n
∑

j=1

λ
−1/2
j 〈aj, Kf〉φj + f ′

⊥,

where aj = Kφj/||Kφj|| and where rf⊥ is orthogonal to the φjs. Notice that the component

f⊥ cannot be estimated from the data: because Kf ′
⊥ = 0, its contribution is not observed.

Using an optimal estimation procedure for f ′, the mean squared error is approximately

n
∑

j=1

min(β2
j , λ

−1
j τ 2

j ),
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where each τ 2
j is a linear combination of the σ2

ks (13). Because the λjs decrease, large com-

ponents at high order have a substantial contribution to the mean squared error. Put another

way, derivative estimation is hard. And this problem becomes more severe for higher-order

derivatives.

Deriving Equation (EQ::R). In this subsection, we show how to derive the expression for

co-moving distance r as a function of w. The specification of w in terms of r ′ and r′′ yields a

differential equation whose solutions form a one-dimensional family in r ′(0). We have

w(z) =

3
2
H2

0Ωm(1 + z)3 + (1 + z) r′′(z)
(r′(z))3

3
2
H2

0Ωm(1 + z)3 − 3
2
(r′(z))−2

− 1 (1)

=
3
2
H2

0Ωm(1 + z)3(r′(z))3 + r′′(z)(1 + z)
3
2
H2

0Ωm(1 + z)3(r′(z))3 − 3
2
r′(z)

− 1 (2)

=
(1 + z)r′′(z) + 3

2
r′(z)

3
2
H2

0Ωm(1 + z)3(r′(z))3 − 3
2
r′(z)

. (3)

It follows that

r′′(z) +
3

2

1 + w(z)

1 + z
r′(z) =

3

2
H2

0Ωm(1 + z)2w(z)(r′(z))3. (4)

Write g ≡ r′ and θ = g(0). Note that r(0) = 0. The above differential equation becomes

g′(z) − 1

2
U(z)g(z) = −1

2
V (z)g3(z) (5)

where U(z) = −3 1+w(z)
1+z

and V (z) = −3H2
0Ωm(1 + z)2w(z). Define h = g−2, then h′ =

−2g′/g3. In terms of h, the differential equation becomes

h′(z) + U(z)h(z) = V (z). (6)

If we define T (z) =
∫ z
0 U(s) ds, then

(

eT (z)h(z)
)′

= eT (z)U(z)h(z) + eT (z)h′(z) = eT (z)V (z); (7)
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hence, using h(0) = 1/θ2, we have

h(z) = e−T (z)
∫ z

0
eT (s)V (s) ds+

1

θ2
e−T (z) (8)

Using the boundary condition θ = 1/H0 gives

r′(z) =
[

e−T (z)
∫ z

0
eT (s)V (s) ds+H2

0 e
−T (z)

]−
1
2

(9)

=
[

3H2
0Ωme

3
∫ z

0

1+w(s)
1+s

ds
∫ z

0
e−3

∫ s

0

1+w(t)
1+t

dt(1 + s)2(−w(s)) ds + H2
0e

3
∫ z

0

1+w(s)
1+s

ds
]−

1
2

(10)

= H−1
0

[

Ωm(1 + z)3e−3
∫ z

0

−w(s)
1+s

ds
∫ z

0
e3
∫ s

0

−w(t)
1+t

dt3

(

−w(s)

1 + s

)

ds + (1 + z)3e−3
∫ z

0

−w(s)
1+s

ds

]−
1
2

(11)

= H−1
0

[

Ωm(1 + z)3(1 − e−3
∫ z

0

−w(s)
1+s

ds) + (1 + z)3e−3
∫ z

0

−w(s)
1+s

ds
]−

1
2

(12)

= H−1
0

[

Ωm(1 + z)3 + (1 − Ωm)(1 + z)3e−3
∫ z

0

−w(s)
1+s

ds
]−

1
2

(13)

Integrating gives the r in equation (EQ::R).

Because r′ ≥ 0, r is necessarily monotone. In fact, r′ is bounded above and below by the

cases where the exponential term is zero or one, respectively. This gives the stated bounds on

the derivative. Concavity of r (and consequently log r) can be a powerful tool for sharpening

inferences. Conditions for concavity follow directly from the above expression for r ′. Let

h = 1/(r′)2; then, r′′(z) = −(1/2)h−3/2(z)h′(z) = −(1/2)(r′(z))3h′(z), so r′′ ≤ 0 if and only

if h′ ≥ 0. But

h′(z) = 3(1 + z)2
[

ΩM + (1 − Ωm)(1 + w(z))e−3
∫ z

0

−w(s)
1+s

ds
]

.

It follows that r is concave if, for all z ≥ 0,

w(z) ≥ − 1

1 − Ωm

[

(1 − Ωm) + Ωme
3
∫ z

0

−w(s)
1+s

ds
]

.

This holds, for example, if w ≥ −1/(1 − Ωm), as claimed. This is the best one can do near

zero, but away from zero, sufficient smoothness conditions on w can lead to concavity as well.
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Equation (EQ::R) also gives an expression for the deceleration q in terms of w.

q(z) = −1 − (1 + z)
r′′(z)

r′(z)
(14)

= −1 − (1 + z)[log r′(z)]′ (15)

= −1 +
1 + z

2

[

log
(

H2
0Ωm(1 + z)3

(

1 − e−3
∫ z

0

−w(s)
1+s

ds
)

+
1

θ2

)]′

(16)

which becomes

q(z) =
1

2
+

3

2

(1 − Ωm)w(z)

(1 − Ωm) + Ωme
3
∫ z

0

−w(s)
1+s

ds
(EQ :: Q :: W )

When w ≡ −1, equation (EQ::Q::W) reduces to

q(z) = −1 +
3

2

H2
0Ωmθ

2(1 + z)3

H2
0Ωmθ2 ((1 + z)3 − 1) + 1

,

and the crossing point occurs at z0 = (2(1−H2
0Ωmθ

2)/H2
0Ωmθ

2)1/3 − 1. We can solve for r in

terms of q using a simpler method than that given above for w:

r(z) = λ1z + λ2

∫ z

0
ds e−

∫ s

0
du

1+q(u)
1+u .

The extra dimension in the solution space cannot be eliminated in general because q is insensi-

tive to a linear term in the co-moving distance. However, comparison with equation (13) shows

that either λ1 = 0 or r′′ ≡ 0. This gives two families of solutions

r(z) = θ
∫ z

0
ds e−

∫ s

0
du

1+q(u)
1+u or r(z) = θz, (EQ :: R :: Q)

where r′(0) = θ > 0. For example, the case q ≡ 0, the boundary between accelerating and

decelerating corresponds to r(z) = θ log(1 + z) because the linear solution is ruled out for

purely decelerating universes.

By considering various forms for w, equation (EQ::R) produces various models for r. Sup-

pose that we expandw in a basis asw(z) = −∑d
j=1 βjψj(z). Let ψ̃j(z) = 3

∫ z
0 ψj(u)/(1+u) du.
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Equation (EQ::R::Basis) follows immediately. When the ψjs are polynomials, this reduces to

the form of equation (EQ::R::POLY). For integer n ≥ 0,

∫ z

0

un

1 + u
du =

zn+1

n + 1
F

(

1 n+ 1

n + 2

∣

∣

∣

∣

∣

−z
)

= (−1)n
[

log(1 + z) +
n
∑

k=1

(−1)k
zk

k

]

,

where F is the generalized hypergeometric function F 2
1 . For instance, if ψj(z) = −zj−1, for

j = 1, . . . , d, let αk =
∑d−1
m=k(−1)mβm+1, for k = 0, . . . , d− 1. Then,

∫ z

0

−w(u)

1 + u
=

(

d−1
∑

k=0

(−1)kβk+1

)

log(1 + z) +
d−1
∑

k=1

(−1)kβk+1

k
∑

`=1

(−1)`
z`

`
(17)

=

(

d−1
∑

k=0

(−1)kβk+1

)

log(1 + z) +
d−1
∑

`=1

d−1
∑

k=`

(−1)k+`
βk+1

`
z` (18)

= α0 log(1 + z) +
d−1
∑

`=1

(−1)`α`
z`

`
. (19)

Equation (EQ::R::POLY) follows directly. Equation (EQ::R::APOLY) is derived similarly, us-

ing simple integration of (1 + z)−(j+1) for each j.

Remark. For modeling purposes it might be worth re-expressing w as

w(z) = −1 + z

3
v′(z),

where v(0) = 0. This gives a one-to-one correspondence between w and v and r is more simply

expressed as

r(z) = H−1
0

∫ z

0
ds
[

Ωm(1 + s)3 + (1 − Ωm)(1 + s)3e−v(s)
]−

1
2 .

It is also straightforward to compute the Fisher Information matrix for the model. Let ∇r

denote the gradient of r with respect to β, θ as a d + 1 × 1 vector. Then, the log-likelihood

`(β, θ) = −(1/2)
∑n
i=1(Yi − r(zi; β, θ))

2/σ2
i has a Fisher information matrix given by

I(β, θ) =
n
∑

i=1

1

σ2
i

∇r(zi; β, θ)T∇r(zi; β, θ)
r2(zi; β, θ)

. (EQ : FISHER)
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If G is the n × (d + 1) matrix with Gij equal to the jth component of ∇r(zi; β, θ)/r(zi; β, θ)

and Σ = diag(σ2
i ), then the information matrix is given by I(β, θ) = GTΣ−1G. When the

ψjs are polynomials, r can be computed in closed form, allowing a simple computation of the

Fisher information matrix in β, θ. The observed Fisher information also has a relatively simple

form that is easy to compute numerically. Under mild regularity conditions on the ψjs in a basis

expansion of w, we have that

∂r

∂βj
(z) =

1

2

∫ z

0
ds (r′(s))3(1 − Ωm)(1 + s)3e

−
∑

j
βj ψ̃j(s)ψ̃j(s),

and that
∂r

∂H0

(z) = −H−1
0 r(z),

and that
∂r

∂Ωm
(z) = −1

2

∫ z

0
ds (r′(s))3(1 + s)3(1 − e−

∑

j
βj ψ̃j(s)).

Null Hypotheses for Testing Cosmological Models Here we provide further details about

the hypothesis testing procedure.

1. Equation of state bounds for the quintessence models.

To derive equations (EQ::THAW) and (EQ::FREEZE), we begin by transforming equations

(EQ::THAW::CON::lna) and (EQ::FREEZE::CON::lna) from the scale factor a to redshift z.

Replacing dw/d lna by −(1+z)w′(z) and reversing the inequality because of the negative sign

yields the corresponding equations

−3
1 + w(z)

1 + z
≤ w′(z) ≤ −1 + w(z)

1 + z
, (EQ :: THAW :: CON :: z)

for thawing solutions, and

−0.2w(z)
1 + w(z)

1 + z
≤ w′(z) ≤ −3w(z)

1 + w(z)

1 + z
, (EQ :: FREEZE :: CON :: z)

for freezing solutions.
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Begin with the assumption that w > −1, which we will weaken below. For the thawing

equalities, divide through by 1 + w to get w′/(1 + w) = (log(1 + w))′ and thus

−3
1

1 + z
≤ (log(1 + w(z)))′ ≤ − 1

1 + z
.

Integrating through from 0 to z yields

−3 log(1 + z) ≤ log(1 + w(z)) − log(1 + w(0)) ≤ − log(1 + z),

and taking exponents

(1 + z)−3 ≤ 1 + w(z)

1 + w(0)
≤ (1 + z)−1,

which leads directly to equation (EQ::THAW).

Similarly for the freezing solutions, w′/w(1 + w) = (log(w/(1 + w)))′. Dividing through

and integrating as before gives

−0.2 log(1 + z) ≤ log

(

w(z)

1 + w(z)

)

− log

(

w(0)

1 + w(0)

)

≤ −3 log(1 + z).

Taking exponents and simplifying gives equation (EQ::FREEZE).

For freezing solutions, w′ ≥ 0, and if w(0) = −1, then w ≡ −1. For thawing solutions,

either w(0) = −1 and w ≡ −1, or w(z) = −1 for some z > 0. The latter case leads to a

contradiction given the bounds on w′ and continuity of w. Hence, the bounds hold for −1 ≤

w ≤ 0.8.

2. Constructing the Confidence set C

Suppose that for i = 1, . . . , n, Yi = fi + σiεi, where σis are known numbers and the

εis are independent Gaussian variables. This corresponds to equation (EQ::DATA) with fi =

log1 0r(zi). If the vector f = (f1, . . . , fn) denotes the true but unknown values of the function

at the observed points, then a 1−α confidence set C for f is a random set, constructed from the

data, that satisfies

P{C 3 f} ≥ 1 − α.
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We want C to be as small as possible.

There are several ways to construct such confidence sets. One way is to invert a goodness

of fit test, such as the chi-squared test. The chi-squared statistic for the null hypothesis f = f 0

equals T 2(f0) = (1/n)
∑n
i=1(Yi − f 0

i )
2/σ2

i on n degrees of freedom. The set of f 0 that are not

rejected by this test at level α form a 1 − α confidence set. That is, we can define C = {f 0 :

T 2(f0) ≤ χ2
n,α/n}, where χ2

n,α is the upper-tail α quantile of the corresponding chi-squared

distribution. This defines a confidence set because, for the true f , P{χ2(f) ≤ χ2
n,α} = 1 − α.

The chi-squared confidence set is simple to use, but it has several major drawbacks. The

confidence set is relatively large; the radius of the set χn, α/
√
n is O(1) no matter how large

n is. The set is constructed from a rough estimator of f , namely the data. The size of the set

is independent of the data and thus cannot adjust to evidence of smoothness. And some prior

information, such as shape restrictions, is difficult to incorporate in practice.

There are practical confidence set procedures that address all these drawbacks. We consider

two, adaptive chi-squared confidence sets from Baraud and shape-restricted confidence bands

from Davies et al. (17). Both achieve asymptotically optimal size and adjust their size based on

the data. Both are computationally practical, though somewhat more work than the naive chi-

square confidence set. And both allow us to incorporate prior information about the co-moving

distance to produce a smaller confidence set.

The procedure of Baraud takes advantage of the fact that a smaller confidence set is possible

when f is smoothly varying. One specifies a nested sequence of subspaces V1 ⊂ V2 ⊂ · · · ⊂

Vm, where Vm is the set of all vectors and the rest of the subspaces have dimension less than

n/2. Lower dimensional subspaces correspond to spaces of smoother f ; the final subspace is

included to ensure that all true vectors can be covered. For each subspace Vi, we do a chi-

squared goodness of fit test of the null hypothesis f ∈ Vi. For those subspaces for which the

null is not rejected, we form a ball of specified radius (depending on the subspace’s dimension)

35



around the projection of the data on that subspace. The confidence set is the intersection of

these balls.

The procedure of Davis et al. generates confidence bands under the assumption that f is

monotone and concave. Let Iik be the set of 1 ≤ j ≤ n such that zi ≤ zj ≤ zk for some i ≤ k.

Consider the following statistics, modified from the original paper to account for the different

standard errors of the measurements:

Tik =
1

√

#(Ijk)

∑

j∈Ijk

yj − fj
σj

.

When f is the true vector, the Tiks each are mean zero Gaussian variables. The procedure begins

with a confidence set for the Tiks. In the original paper, this is a confidence cube with edge

length equal to twice the 1 − α quantile of maxi,k |Tik|. The key is that the initial confidence

set have linear boundaries. Constraints for concavity and monotonicity are also linear. The

confidence bands are constructed by maximizing and minimizing fj subject to f lying in the

initial confidence set and satisfying the shape restrictions. This can be expressed as two linear

programs for each j.

We modify the Davies et al. procedure in several ways. First, because monotonicity and

concavity are used in the procedure in log space, the confidence bands need not be concave

in r space. We adjust for this by optimizing the bands in r space, finding the smallest bands

consistent with the shape restrictions there, including the additional constraint that r(0) = 0.

This involves two additional linear programs for each zi. Second, we use a smaller initial con-

fidence set for the Tiks, a degenerate ellipsoid, which is drastically smaller than the hyper-cube

of Davies et al. but has the proper coverage. This requires second order cone programming,

which ATTN: This last part is not yet reflected in the results.

Finally, we can search the chi-squared ball imposing the shape constraints using quadratic

programming. This reduces the effective size of the confidence set substantially.
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With the current data, all of these methods give comparable results, but the new methods

give higher power, with the advantage increasing with n.

3. Computational details

The Baraud procedure has a several “tuning parameters,” including the selection of sub-

spaces, the allocation of confidence level to each of the subspaces, the significance levels of the

chi-squared goodness of fit tests, and the overall confidence level. We use spaces of B-splines

in log10(z) of dimension 2, 3, 4, 5, 10, and 20 along with the full subspace of dimension n. In

this parameterization, log10(r) is nearly linear and is well smit by a low dimensional space of

splines. Of total probability α allowed for misfit, we allocate α/2 to the full subspace and divide

the remaining α/2 evenly among the spaces. We give aach of the individual goodness of fit tests

significance level 0.2. For large data sets, the Baraud procedure will eventually outperform the

chi-squared confidence ball, but with our current data, the results are essentially the same.

The Davies procedure applies to log10(r) which is monotone and concave because r is. The

result are concave and monotone lower confidence bands for log10(r) that can be transferred to

r space. The procedure requires solving two linear programs for each zi for the initial bands

and that much again for the improvement in r space. Searching the resulting bands in r space is

straightforward. In some cases, one of the vectors in the one or two parameter family generated

by our testing procedure lies within the bands. Otherwise, such a vector can be found by finding

a feasible solution for a simple linear program in with monotonicity and concavity constraints

and bounds dictated by the bands.

In all of the hypotheses we test, there are one or two free parameters that must be varied. A

simple grid search is practical and straightforward. For any value of the free parameters, we can

tell whether the corresponding r lies in the Davies et al. confidence bands by direct comparison

and with the Baraud confidence set by computing the distance to each of the ball centers. The

search can be made faster in the Baraud case through finding the best match with quadratic
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programming, but that did not prove necessary in practice.

ATTN This whole bit needs polishing and clarifying. Very likely should drop Baraud

because it does nothing for us, but I’m holding on to it for the moment.

Bootstrap and Confidence Bands The bootstrap is a technique for approximating the sam-

pling distribution of a statistic by resampling from the data set (21). Pseudo-data are drawn

from the empiricial distribution of the data and the statistic computed; this is repeated many

times to approximate a desired feature of the statistics’ sampling distribution. The bootstrap

is most commonly used to generate standard errors and confidence intervals for complicated

statistics.

In a regression problem such as this, resampling naively from the empirical distribution

would obscure the relationship with redshift. Instead, we resample from the residuals. The

basic procedure is as follows:

1. Compute the maximum likelihood estimator (β̂, θ̂), where β is the vector of parameters

for w and θ ≡ r′(0).

2. Compute residuals ei = Yi − r̂(zi).

3. Using the standard errors of Yi and the the linear approximation at the maximum likeli-

hood estimator, standardize the residuals to unit variance. Call these standardized residu-

als εi.

4. For b = 1, . . . , B, for some large B, draw pseudo-noise from the empirical distribution

of the εi. Call these ε∗(b)i for i = 1, . . . , n.

5. Generate pseudo-data

Y
∗(b)
i = r̂(zi) + σ(zi)ε

∗(b)
i .
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6. Compute the maximum likelihood estimates (β̂∗(b), θ̂∗(b)) from each pseudo-data set.

7. Compute standard errors and confidence intervals for these parameters from the (β̂∗(b), θ̂∗(b))’s

as in (21).

We uses bootstrap confidence intervals to compute confidence bands for w and q by computing

the largest and smallest values of the functions at each redshift that are consistent with the

confidence intervals on the parameters.
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