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We show that there do not exist adaptive confidence bands for curve estimation except
under very restrictive assumptions. We propose instead to construct adaptive bands
that cover a surrogate function f ? which is close to, but simpler than, f . The surrogate
captures the significant features in f . We establish lower bounds on the width for any
confidence band for f ? and construct a procedure that comes within a small constant
factor of attaining the lower bound for finite-samples.
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1 Introduction

1.1 Motivation

Let (x1, Y1), . . . , (xn, Yn) be observations from the nonparametric regression model

Yi = f(xi) + σ εi (1)

where εi ∼ N(0, 1), xi ∈ (0, 1), and f is assumed to lie in some infinite-dimensional class of
functions H. We are interested in constructing confidence bands (L, U) for f . Ideally these bands
should satisfy

Pf{L ≤ f ≤ U } = 1 − α for all f ∈ H (2)

where L ≤ f ≤ U means that L(x) ≤ f(x) ≤ U(x) for all x ∈ X , where X is some subset
of (0, 1) such as X = {x},X = {x1, . . . , xn} or X = (0, 1). Throughout this paper, we take
X = {x1, . . . , xn} but this particular choice is not crucial in what follows.

Attaining (2) is difficult and hence it is common to settle for pointwise asymptotic coverage:

lim inf
n→∞

Pf{L ≤ f ≤ U } ≥ 1 − α for all f ∈ H. (3)

“Pointwise” refers to the fact that the asymptotic limit is taken for each fixed f rather than uni-
formly over f ∈ H. Papers on pointwise asymptotic methods include Claeskens and Van Keilegom
(2003), Eubank and Speckman (1993), Härdle and Marron (1991), Hall and Titterington (1988),
Härdle and Bowman (1988), Neumann and Polzehl (1998), and Xia (1998).
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and NSF Grant DMS-0104016.
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Achieving even pointwise asymptotic coverage is nontrivial due to the presence of bias. If f̂(x)

is an estimator with mean f(x) and standard deviation s(x) then

f̂(x) − f(x)

s(x)
=
f̂(x) − f(x)

s(x)
+

bias(x)√
variance(x)

.

The first term typically satisifes a central limit theorem but the second term does not vanish even
asymptotically if the bias and variance are balanced. For discussions on this point, see the papers
referenced above as well as Ruppert and Wand (2003) and Sun and Loader (1994).

Pointwise asymptotic bands are not uniform, that is, they do not control

inf
f∈H

Pf{L ≤ f ≤ U } . (4)

The sample size n(f) required for the true coverage to approximate the nominal coverage, depends
on the unknown function f .

The aim of this paper is to attain uniform coverage over H. We say thatB = (L, U) has uniform
coverage if

inf
f∈H

Pf{L ≤ f ≤ U } ≥ 1 − α. (5)

Starting in Section 3, we will insist on coverage over H = {all functions}.
The bound in (5) can be achieved trivially using Bonferroni bands. Set `i = Yi − cnσ and

ui = Yi + cnσ, where cn = Φ−1(1 − α/2n) and Φ is the standard Normal CDF. Yet this band is
unsatisfactory for several reasons:

1. The width of the band grows with sample size.

2. The band is centered on a poor estimator of the unknown function.

3. The width of the band is independent of the data and hence cannot adapt to the smoothness
of the unknown function.

Problems (1) and (2) are easily remedied by using standard smoothing methods. But the results of
Low (1997) suggest that (3) is an inevitable consequence of uniform coverage.

The smoother the functions in H, the smaller the width necessary to achieve uniform cover-
age. Suppose that F ⊂ H contains the “smooth” functions in H and that H − F is nonempty.
Uniform coverage over H requires that the width of fixed-width bands be driven by the “rough”
functions in H−F ; the width will thus be large even if f ∈ F . Ideally, our procedure would adjust
automatically to produce narrower bands when the function is smooth (f ∈ F ) and wider bands
when the function is rough (f 6∈ F ), but to do that, the width must be determined from the data.
Low showed that for density estimation at a single point, fixed-width confidence intervals perform
as well as random length intervals; that is, the data do not help reduce the width of the bands for
smoother functions. In Section 2, we extend Low’s result to nonparametric regression and show
that the phenomenon is quite general. Without restrictive assumptions, confidence bands cannot
adapt.
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These results mean that the width of uniform confidence bands is determined by the greatest
roughness we are willing to assume. Because the typical assumptions about H in the nonparametric
regression problem are loosely held and difficult to check, the result is that the confidence band
widths are essentially arbitrary. This is not satisfactory in practice.

The contrast with L2 confidence balls is noteworthy. L2 confidence sets have been studied
by Li (1999), Juditsky and Lambert-Lacroix (2002), Beran and Dümbgen (1998), Genovese and
Wasserman (2004), Baraud (2004), Hoffman and Lepski (2003), Cai and Low (2004), and Robins
and van der Vaart (2004). Let

B =

{
f ∈ R

n :
1

n

n∑

i=1

(fi − f̂i)
2 ≤ R2

n

}
(6)

for some f̂ and suppose that
inf

f∈Rn
Pf{f ∈ B} ≥ 1 − α. (7)

Then
inf

f∈Rn
Ef (Rn) ≥ C1

n1/4
, and sup

f∈Rn

Ef(Rn) ≥ C2 (8)

where C1 and C2 are positive constants. Moreover, there exist confidence sets that achieve the
faster n−1/4 rate at some points in R

n. Because fixed-radius confidence sets necessarily have ra-
dius of size O(1), the supremum in (8) implies such confidence sets must have random radii. We
can construct random-radius confidence balls that improve on fixed-radius confidence sets, for ex-
ample, by obtaining a smaller radius for subsets of smoother functions f . L2 confidence balls can
therefore adapt to the unknown smoothness of f . Unfortunately, confidence balls can be difficult
to work with in high dimensions (large n) and tend to constrain many features of interest rather
poorly, for which reasons confidence bands are often desired.

It is also interesting to compare the adaptivity results for estimation and inference. Estimators
exist (e.g., Donoho et al. 1995) that can adapt to unknown smoothness, achieving near optimal
rates of convergence over a broad scale of spaces. But since confidence bands cannot adapt, the
minimum width bands that achieve uniform coverage over the same scale of spaces have width
O(1), overwhelming the differences among reasonable estimators. We are left knowing that we are
close to the true function but being unable to demonstrate it inferentially.

The message we take from the nonadaptivity results in Low (1987) and Section 2 of this paper
is that the problem of constructing confidence bands for f over nonparametric classes is simply
too difficult under the usual definition of coverage. Instead, we introduce a slightly weaker notion
– surrogate coverage – under which it is possible to obtain adaptive bands while allowing sharp
inferences about the main features of f .

1.2 Surrogates

Figure 1 shows two situations where a band fails to capture the true function. The top plot shows
a conservative failure: the only place where f is not contained in the band is when the bands
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are smoother than the truth. The bottom plot shows a liberal failure: the only place where f is
not contained in the band is when the bands are less smooth than the truth. The usual notion of
coverage treats these failures equally. Yet, in some sense, the second error is more serious than the
first since the bands overstate the complexity.

We are thus led to a different approach that treats conservative errors and liberal errors differ-
ently. The basic idea is to find a function f ? that is simpler than f as in Figure 2. We then require
that

Pf{L ≤ f ≤ U or L ≤ f ? ≤ U } ≥ 1 − α, for all functions f. (9)

More generally, we will define a finite set of surrogates F ? ≡ F ∗(f) = {f, f ∗
1 , . . . , f

∗
m} and require

that a surrogate confidence band (L, U) satisfy

inf
f

Pf{L ≤ g ≤ U for some g ∈ F ?} ≥ 1 − α. (10)

We will also consider bands that are adaptive in the following sense: if f lies in some subspace
F , then with high probability ‖U − L‖∞ ≤ w(F), where w(F) is the best width of a uniformly
valid confidence band (under the usual definition of coverage) based on the a priori knowledge
that f ∈ F . Among possible surrogates, a surrogate will be optimal if it admits a valid, adaptive
procedure and the set {f ∈ F : F ∗(f) = {f}} is as large as possible.

1.3 Summary of Results

In Section 2, we show that Low’s result on density estimation holds in regression as well. Fixed
width bands do as well as random width bands, thus ruling out adaptivity. We show this when H
is the set of all functions and when H is a ball in a Lipschitz, Sobolev, or Besov space.

Section 3 gives our main results. Theorem 3.2 establishes lower bounds on the width for any
valid surrogte confidence band. Let F be a subspace of dimension d in Rn. The functions that pre-
vent adaptation are those that are close to F in L2 but far in L∞. Loosely speaking, such functions
are close to F except for isolated, spiky features. If ||f − Πf ||2 < ε2 and ||f − Πf ||∞ > ε∞, for
tuning constants ε2, ε∞, define the surrogate f ? to be the projection of f onto F , Πf . Otherwise,
define f ? = f . We show that if Pf{‖U − L‖∞ < w} ≥ 1 − γ for all f ∈ F , then

w ≥ max (wF(α, γ, σ), v(ε2, ε∞, n, d, α, γ, σ)) , (11)

where wF is the minimum width for a uniform confidence band knowing a priori that f ∈ F and
v(ε2, ε∞, n, d, α, γ) is described later.

Corollary 3.2 shows that for proper choice of ε2 and ε∞, the v term in the previous equation
can be made smaller than wF . Figure 3 represents the functions involved; the gray shaded area
are those functions that are replaced by surrogates in the coverage statement, denoted later by
S(ε2, ε∞). These are the functions that are both hard to distinguish from F (because they are close
to it) and hard to cover (because they are “spiky”). The optimal choice of ε2 and ε∞ minimizes the
volume of this set while making the right hand side in inequality (11) equal to wF . Put another
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Figure 1: The top plot shows a conservative failure: the only place where f is not contained in the
band is when the bands are smoother than the truth. The bottom plot shows a liberal failure: the
only place where f is not contained in the band is when the bands are less smooth than the truth.
The usual notion of coverage treats these failures equally.
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Figure 2: The top plot shows a complicated function f . The bottom shows a surrogate f ? which is
simpler than f but retains the main, estimable features of f . Adaptation is possible if we cover f ?

instead of f .
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way, the richest model that permits adaptive confidence bands under the usual notion of coverage
is F = R

n − S(ε2, ε∞).
Theorem 3.5 gives a procedure that comes within a factor of 2 of attaining the lower bound for

finite-samples. The procedure conducts goodness of fit tests for subspaces and constructs bands
centered on the estimator of the lowest dimensional nonrejected subspace. Such a procedure actu-
ally reflects common practice. It is not uncommon to fit a model, check the fit, and if the model
does not fit then we fit a more complex model. In this sense, we view our results as providing a
rigorous basis for common practice. It is known that pretesting followed by inference does not lead
to valid inferences for f (Leeb and and Pötscher, 2005). But if we cant accept that sometimes we
cover a surrogate f ? rather than f , then validity is restored.

These results are proved in Section 4.

1.4 Related Work

The idea of estimating the detectable part of f is present, at least implicitly, in other approaches.
Davies and Kovac (2001) separate the data into a simple piece plus a noise piece which is similar in
spirit to our approach. Another related idea is scale-space inference due to Marron and Chaudhuri
(2000) who focus on inference for all smoothed versions of f rather than f itself. Also related
is the idea of oversmoothing as described in Terrell (1990) and Scott and Terrell (1985). Terrell
argues that “By using the most smoothing that is compatible with the scale of the problem, we
tend to eliminate accidental features.” The idea of one-sided inference in Donoho (1988) has a
similar spirit. Here, one constructs confidence intervals of the form [L,∞) for functionals such
as the number of modes of a density. Bickel and Ritov (2000) make what they call a “radical
proposal” to “ ... determine how much bias can be tolerated without [interesting] features being
obscured.” We view our approach as a way of implementing their suggestion. Another related idea
is contained in Donoho (1995) who showed that if f̂ is the soft threshold estimator of a function
and f(x) =

∑
j θjψj(x) is an expansion in an unconditional basis, then Pf

{
f̂ � f

}
≥ 1 − α

where f̂ =
∑

j θ̂jψj and f̂ � f means that |θ̂j| ≤ |θj| for all j. Finally, we remind the reader that
there is a plethora of work on adaptative estimation; see, for example, Cai and Low (2004) and
references therein.

1.5 Notation

If L and U are random functions on X = {x1, . . . , xn} such that L ≤ U , we define B = (L, U) to
be the (random) set of all functions g on X for which L ≤ g ≤ U . We call B (or equivalently, the
pair L, U ) a band; the band covers a function f if f ∈ B (or equivalently, if L ≤ f ≤ U ). Define
its width to be the random variable

W = ‖U − L‖∞ = max
1≤i≤n

(U(xi) − L(xi)). (12)

Because we are constructing bands on X = {x1, . . . , xn}, we most often refer to functions
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in terms of their evaluations f = (f(x1), . . . , f(xn)) ∈ Rn. When we need to refer to a space of
functions to which f belongs, we use a ˜ to denote the function space and no ˜ to denote the vector
space of evaluations. Thus, if Ã is the space of all functions, then A = Rn. In both cases, we use
the same symbol for the function and let the meaning be clear from context; for example, f ∈ Ã
is the function and f ∈ A is the vector (f(x1), . . . , f(xn)). Define the following norms on R

n:

||f || = ||f ||2 =

√√√√ 1

n

n∑

i=1

f 2
i

||f ||∞ = max
i

|fi|.

We use 〈·, ·〉 to denote the inner product 〈f, g〉 = 1
n

∑n
i=1 figi corresponding to ‖ · ‖.

If F is a subspace of Rn, we define ΠF to be the Euclidean projection onto F , using just Π if
the subspace is clear from context. We use

ei = (0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i times

)T (13)

to denote the standard basis on Rn.
If Fθ is a family of CDFs indexed by θ, we write F−1

θ (α) to denote the upper-tail α-quantile of
Fθ. For the standard normal distribution, however, we use zα to denote the upper-tail α-quantile,
and we denote the CDF and PDF, respectively, by Φ and φ.

Throughout the paper we assume that σ is a known constant; in some cases we simply set
σ = 1. But see Remark 3.1 about the unknown σ case.

2 Nonadaptivity of Bands

In this section we construct lower bounds on the width of valid confidence bands analagous to (8)
and we show that the lower bound is achieved by fixed-width bands.

Low (1997) considered estimating a density f in the class

F(a, k,M) =

{
f : f ≥ 0,

∫
f = 1, f(x0) ≤ a, ||f (k)(x)||∞ ≤M

}
.

He shows that if Cn is a confidence interval for f(0), that is,

inf
f∈F(a,k,M)

Pf{f(0) ∈ Cn} ≥ 1 − α,

then, for every ε > 0, there exists N = N(ε,M) and c > 0 such that, for all n ≥ N ,

Ef(length(Cn)) ≥ c n−k/(2k+1) (14)

for all f ∈ F(a, k,M) such that f(0) > ε. Moreover, there exists a fixed-width confidence interval
Cn and a constant c1 such that Ef(length(Cn)) ≤ c1n

−k/(2k+1) for all f ∈ F(a, k,M). Thus,
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the data play no role in constructing a rate-optimal band, except in determining the center of the
interval.

For example, if we use kernel density estimation, we could construct an optimal bandwidth
h = h(n, k) depending only on n and k – but not the data – and construct the interval from that
kernel estimator. This makes the interval highly dependent on the minimal amount of smoothness
k that is assumed. And it rules out the usual data-dependent bandwidth methods such as cross-
validation.

Now return to the regression model

Yi = fi + σ εi, i = 1, . . . , n, (15)

where ε1, . . ., εn are independent, Normal(0, 1) random variables, and f = (f1, . . . , fn) ∈ R
n.

THEOREM 2.1. Let B = (L, U) be a 1− α confidence band over Θ, where 0 < α < 1/2 and
let g ∈ Θ. Suppose that Θ contains a finite set of vectors Ω, such that:

1. for every distinct pair f, ν ∈ Ω, we have 〈f − g, ν − g〉 = 0 and

2. for some 0 < ε < (1/2) − α,

max
f∈Ω

en||f−g||2/σ2

|Ω| ≤ ε2. (16)

Then,
Eg(W ) ≥ (1 − 2α− 2ε) min

f∈Ω
||g − f ||∞. (17)

We begin with the case where Θ = R
n. We will obtain a lower bound on the width of any

confidence band and then show that a fixed-width procedure attains that width. The results hinge
on finding a least favorable configuration of mean vectors that are as far away from each as possible
in L∞ while staying a fixed distance ε in total-variation distance.

THEOREM 2.2. Let H = R
n and fix 0 < α < 1/2. Let B = (L, U) be a 1 − α confidence

band over H. Then, for every 0 < ε < (1/2) − α,

inf
f∈Rn

Ef(W ) ≥ (1 − 2α− 2ε)σ
√

log(nε2). (18)

The bound is achieved (up to constants) by the fixed-width Bonferroni bands:

`i = Yi − σzα/n, ui = Yi + σzα/n.

THEOREM 2.3 (LIPSHSCHITZ BALLS). Define xi = i/n for 1 ≤ i ≤ n. Let

H̃(L) =

{
f : |f(x) − f(y)| ≤ L|x− y|, x, y ∈ [0, 1]

}
, (19)

be a ball in Lipschitz space, and let
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H(L) = {(f(x1), . . . , f(xn)) : f ∈ H̃(L)} (20)

be the vector of evaluations on X Fix 0 < α < 1/2 and let B = (L, U) be a 1−α confidence band
over H(L). Then, for every 0 < ε < (1/2) − α,

inf
f∈H(L)

Ef(W ) ≥ an (21)

where

an =

(
log n

n

)1/3

×
(
Lσ2

2

)1/3

×
(

1 +
3 log(1 + ε2)

logn
+

2 log(L/(2σ))

log n
− log

(
1
3
logn + log(1 + ε2) + 2

3
log(L/(2σ))

)

logn

)
.

The lower bound is achieved (up to logarithmic factors) by a fixed-width procedure.

THEOREM 2.4 (SOBOLEV BALLS). Let H̃(p, c) be a Sobolev ball of order p and radius c and
let B = (L, U) be a 1 − α confidence band over H(p, c). For every 0 < ε < (1/2) − α, for every
δ > 0, and all large n,

inf
F∈H(p,c−δ)

EF (W ) ≥ (1 − 2α− 2ε)
( cn
np/(2p+1)

)
(22)

for some cn that increases at most logarithmically. The bound is achieved (up to logarithmic fac-
tors) by a fixed-width band procedure.

THEOREM 2.5 (BESOV BALLS). Let H̃(p, q, ξ, c) be ball of size c in the Besov space Bξ
p,q

and et B = (L, U) be a 1 − α confidence band over H(p, q, ξ, c). For every 0 < ε < (1/2) − α,
and every δ > 0,

inf
f∈H(p,q,ξ,c−δ)

Ef(W ) ≥ cn(1 − 2α− 2ε)n−1/(1/p−ξ−1/2). (23)

The bound is achieved (up to logarithmic factors) by a fixed-width procedure.

3 Projection Surrogates

Let {FT : T ∈ T } be a scale of linear subspaces. Let wT denote the smallest width of any
confidence band when it is known that f ∈ FT (defined more precisely below). We would like to
define an approporiate surrogate and a procedure that gets as close as possible to the target width
wT when f ∈ FT . To clarify the ideas, subsection 3.2 develops our results in the special case
where the subspaces are {F ,Rn} for a fixed F of dimension d < n. Subsection 3.3 handles the
more general case of a sequence of nested subspaces.
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3.1 Preliminaries

We begin by defining several quantities that will be used throughout. Let τ(ε) denote the total
variation distance between a N(0, 1) and a N(ε, 1) distribution. Thus,

τ(ε) = Φ(ε/2) − Φ(−ε/2). (24)

Then, εφ(ε/2) ≤ τ(ε) ≤ εφ(0) and τ(ε) ∼ εφ(0) as ε→ 0.

LEMMA 3.1. If P = N(f, σ2I) and Q = N(g, σ2I) are multivariate Normals with f, g ∈ R
n

then

dTV(P,Q) = τ

(√
n||f − g||

σ

)
. (25)

We will need several constants. For 0 < α < 1 and 0 < γ < 1 − 2α define

κ(α, γ) = (1/6)
√

2 log(1 + 4(1 − γ − 2α)2). (26)

For 0 < β < 1 − ξ < 1 and integer m ≥ 1 define Q = Q(m, β, ξ) to be the solution of

ξ = 1 − F0,m(F−1
Q
√

m,m
(β)), (27)

where Fa,d denotes the CDF of a χ2 random variable with d degrees of freedom and noncentrality
parameter a

LEMMA 3.2. There is a universal constant Λ(β, ξ) such that Q(m, β, ξ) ≤ Λ(β, ξ) for all
m ≥ 1. For example, Λ(.05, .05) ≤ 6.25. Suppose now that m = mn, β = βn, and ξ = ξn are
all functions of n. As long as − log βn ≤ log n and − log ξn ≤ √

logn, then Q(mn, βn, ξn) =

O(
√

log n).

Next, define
E(m,α, γ) = max(Q(m,α, γ), 2κ(α, γ)), (28)

for 0 < α < 1 and 0 < γ < 1 − 2α.
Finally, if F is a subspace of dimension d, define

ΩF = max
1≤i≤n

‖ΠFei‖
‖ei‖

, (29)

where ei is defined in equation (13). Note that 0 ≤ ΩF ≤ 1. The value of ΩF relates to the
geometry of F as a hyperplane embedded in Rn, as seen through the following results.

LEMMA 3.3. Let F be a subspace of R
n. Then

min

{
‖v‖ : v ∈ F , ‖v‖∞ = ε

}
=

ε√
nΩF

(30)

max

{
‖v‖∞ : v ∈ F , ‖v‖ = ε

}
= ε

√
nΩF . (31)
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LEMMA 3.4. Let {φ1, . . . , φJ} be orthonormal vectors with respect to || · || in R
n and let F be

the linear span of these vectors. Then

ΩF =

√∑J
j=1 φ

2
j(i)

n
. (32)

In particular, if maxj maxi φj(i) ≤ c then

ΩF ≤ c

√
J

n
. (33)

LEMMA 3.5. Let {φ1, . . . , φJ} be orthonormal functions on [0, 1]. Define Hj to be the linear
span of {φ1, . . . , φj}. Let xi = i/n, i = 1, . . . , n and Fj = {f = (h(x1), . . . , h(xn)) : h ∈ Hj}.
Then,

ΩF =

√∑J
j=1 φ

2
j(xi)

n
+O(1/n). (34)

In particular, if maxj supx φj(x) ≤ c then

ΩF ≤ c

√
J

n
+O(1/n). (35)

3.2 Single Subspace

To begin, we start with a single subspace F of dimension d.

Definition 1 For given ε2, ε∞ > 0, define the surrogate f ? of f by

f ? =

{
Πf if ||f − Πf ||2 ≤ ε2 and ||f − Πf ||∞ > ε∞
f otherwise.

(36)

Define the surrogate set of f , F ∗(f) = {f, f ∗}, which will be a singleton when f ∗ = f . Define the
spoiler set S(ε2, ε∞) = {f ∈ Rn : f ? 6= f} and the invariant set I(ε2, ε∞) = {f : f ? = f}.

We give a schematic diagram in Figure 3. The gray area represents S(ε2, ε∞). These are the
functions that preclude adaptivity. Being close to F in L2 makes them hard to detect but being
far from F in L∞ makes them hard to cover. To achieve adaptivity we must settle for sometimes
covering ΠFf .
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Hard to detect; easy to cover

Hard to detect; hard to cover

Easy to detect; hard to cover

Figure 3: The dot at the center represents the subspace F . The shaded area is the set of spoilers
S(ε2, ε∞) of vectors for which f ? 6= f . If these vectors were not surrogated, adaptation is not
possible. The non-shaded area is the invariant set I(ε2, ε∞) = {f : f ? = f}.

3.2.1 Lower Bounds

We begin with two lemmas. The first controls the minimum width of a band and the second controls
the maximum. The second is of more interest for our purposes; the first lemma is included for
completeness. For any 1 ≤ p ≤ ∞, ε > 0, and A ⊂ R

n define

Mp(ε, A) = sup{dTV(Pf , Pg) : f, g ∈ A, ||f − g||p ≤ ε} (37)

and
m2(ε, A0, A1) = inf{dTV(Pf , Pg) : f ∈ A0, g ∈ A1, ‖f − g‖∞ ≥ ε}. (38)

LEMMA 3.6. Suppose that inff∈A Pf{L ≤ f ≤ U } ≥ 1 − α. Let 1 ≤ p ≤ ∞ and ε > 0. For
f ∈ A, define

ε(f, q) = sup{‖f − h‖q : h ∈ A, ‖f − h‖p ≤ ε},
where 1 ≤ q ≤ ∞. Then, for any A0 ⊂ A,

inf
f∈A0

Pf{W > ε(f,∞)} ≥ 1 − 2α− sup
f∈A0

Mp(ε(f, p), A) (39)

where W = ||U − L||∞. If every point in A is contained in a subset of A of `p-diameter ε, then
ε(f, p) ≡ ε, and

inf
f∈A0

Pf{W > ε} ≥ 1 − 2α−Mp(ε, A). (40)
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LEMMA 3.7. Suppose that inff∈A Pf{L ≤ f ≤ U } ≥ 1 − α. Suppose that A = A0 ∪ A1

(not necessarily disjoint). Let ε > 0 be such that for each f ∈ A0 there exists g ∈ A1 for which
‖f − g‖∞ = ε. Then,

sup
f∈A0

Pf{W > ε} ≥ 1 − 2α−m2(ε, A0, A1) (41)

where W = ||U − L||∞.

Now we establish the target rate, the smallest width of a band if we knew a priori that f ∈ F .
Define

wF ≡ wF(α, γ, σ) = ΩF σ τ
−1(1 − 2α− γ). (42)

THEOREM 3.1. Suppose that

inf
f∈F

Pf{L ≤ f ≤ U } ≥ 1 − α. (43)

If inff∈F Pf{W ≤ w} ≥ 1 − γ then w ≥ wF .
A band that achieves this width, up to logarithmic factors, is (L, U) = f̂ ± c where f̂ = ΠY

and c = σ(ΠΠT )iizα/2n.

Next, we give the main result for this case. Let

v0(ε2, ε∞, n, α, γ, σ) = min
{√

nε2, ε∞, στ
−1(1 − 2α− γ)

}
, (44)

v1(ε2, n, d, α, γ, σ) =

{
0 if ε2 ≥ 2κ(α, γ)(n− d)1/4n−1/2

κ(α, γ)(n− d)1/4n−1/2 if ε2 < 2κ(α, γ)(n− d)1/4n−1/2,
(45)

and define

v(ε2, ε∞, n, d, α, γ, σ) = max

{
v0(ε2, ε∞, n, α, γ, σ), v1(ε2, n, d, α, γ, σ)

}
. (46)

THEOREM 3.2 (LOWER BOUND FOR SURROGATE CONFIDENCE BAND WIDTH).
Fix 0 < α < 1 and 0 < γ < 1 − 2α. Suppose that for bands B = (L, U)

inf
f∈Rn

Pf{F ∗(f) ∩B 6= ∅} ≥ 1 − α (47)

and that
inf
f∈F

Pf{W ≤ w} ≥ 1 − γ. (48)

Then,
w ≥ w(ε2, ε∞, n, d, α, γ, σ) ≡ max

{
wF(α, γ, σ), v(ε2, ε∞, n, d, α, γ, σ)

}
(49)
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The inequality (47) ensures that B is a valid surrogate confidence band: for every function,
either the function or its surrogate is covered with at least the target probability. The result gives a
probabilistic lower bound on the width of the band that is at least as big as the best a priori width
for the subspace. As we will see, with proper choice of ε2 and ε∞, the v term can be made small,
giving the subspace width wF for the lower bound.

Next, we address the question of optimality. Consider, for example, the trivial surrogate that
maps all functions to 0. We can cover the surrogate using 0 width bands with probability 1, but this
would not be too interesting. There is a tradeoff between the width of the bands on low dimensional
subspaces and the volume of the spoiler set, the functions that are surrogated. We characterize
optimality here as minimizing the volume of the spoiler set S(ε2, ε∞) while still attaining the
target width with high probability when f truly lies in the subspace. In this sense, the surrogate
defined above is optimal.

THEOREM 3.3 (OPTIMALITY). Let w denote the right hand side of inequality (49). Then
w ≥ wF , where wF is defined in (42). Setting

ε2 = 2κ(α, γ)(n− d)1/4n−1/2, ε∞ = wF

minimizes Volume(S(ε2, ε∞)) subject to achieving the lower bound on w.

3.2.2 Achievability

Having established a lower bound, we need to show that the lower bound is sharp. We do this by
constructing a finite-sample procedure that achieves the bound within a factor of 2. Let Fa,d denote
the CDF of a χ2 random variable with d degrees of freedom and noncentrality parameter a and let
χ2

α,d = F−1
0,d (1 − α). Let T = ||Y − ΠY ||2 and define

B = (L, U) = f̂ ± cσ (50)

where

f̂ =

{
Y if T > χ2

γ,n−d

ΠY if T ≤ χ2
γ,n−d

(51)

and

c =

{
zα/(2n) if T > χ2

γ,n−d

ωF + ε∞ if T ≤ χ2
γ,n−d.

(52)

THEOREM 3.4. If
γ ≥ 1 − F0,n−d(F

−1
nε22,n−d

(α/2)) (53)

then
inf

f∈Rn
Pf{F ?(f) ∩B 6= ∅} ≥ 1 − α (54)
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and
inf
f∈F

Pf{W ≤ wF + ε∞} ≥ 1 − γ. (55)

If ε2 ≥ E(n− d, α/2, γ)(n− d)1/4n−1/2, where E(m,α, γ) is defined in (28), then

inf
f∈F

Pf{W ≤ 2w(ε2, ε∞, α, γ, n, d)} ≥ 1 − γ. (56)

where w(ε2, ε∞, α, γ, n, d) is defined (49). Hence, the procedure adapts to within a constant factor
of the lower bound w given in Theorem 3.2.

COROLLARY 3.1. Setting

ε2 = E(n− d, α/2, γ)(n− d)1/4n−1/2, ε∞ = wF

in the above procedure, minimizes Volume(S(ε2, ε∞)) subject to satisfying (56).

REMARK 3.1. The results can be extended to unknown σ by replacing σ with a nonparametric
estimate σ̂. However, the results are then asymptotic rather than finite sample. Moreover, a minimal
amount of smoothness is required to ensure that σ̂ consistently estimates σ; see Genovese and
Wasserman (2005). So as not to detract from our main points, we continue to take σ known.

3.2.3 Remarks on Estimation and the Modulus of Continuity

It is interesting to note that the bands defined above cover the true f over a set V that is larger than
F . In this section we take a brief look at the properties of V .

Define

C(α, a, b) = sup
u>0

(au+ b)

(
1 − α− 1

4
+

1

2
Φ(−u/2)

)
, (57)

and let C(α) ≡ C(α, 1, 0). Let F⊥ be the orthogonal complement of F . Let B⊥
k (0, ε) be a `k-ball

around 0 in F⊥ (k = 2,∞). For f ∈ R
n, let B⊥

k (f, ε) = f +B⊥
k (0, ε). Define

V ≡ V (ε2, ε∞) =
⋃

f∈F

(
B⊥

2 (f, ε2) ∩B⊥
∞(f, ε∞)

)
. (58)

LEMMA 3.8. Let B = (L, U) be defined as in (50). Then

inf
f∈V

Pf{L ≤ f ≤ U } ≥ 1 − α. (59)

Let Tf = f1. The next lemma gives the modulus of continuity (Donoho and Liu 1991) of T
over V which measures the difficulty of estimation over V . The modulus of continuity of T over a
set A is

ω(u,A) = sup{|Tf − Tg| : ‖f − g‖2 ≤ u; f, g ∈ A}. (60)

Donoho and Liu showed that the difficulty of estimation overA is often characterized by ω(1/
√
n,A)

in the sense that this quantity defines a lower bound on estimation rates.
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LEMMA 3.9 (MODULUS OF CONTINUITY). We have

ω(u, V ) =

(
uΩ

√
n

√
Ω2

1 + Ω2
+ min

(
u
√
n√

1 + Ω2
, ε2 ∧ (ε∞/

√
n)

))
. (61)

Note that when ε2 = ε∞ = 0 and Ω ∼
√
d/n, we have ω(1/

√
n,A) ∼

√
d/n as expected.

However, when ε ≡ ε2 = ε∞/
√
n is large we will have that ω(1/

√
n,A) ∼

√
d/n+ε/

√
1 + d2/n.

The extra term ε/
√

1 + d2/n reflects the “ball-like” behavior of V in addition to the subspace-like
behavior of V . The bands need to cover over this extra set to maintain valid coverage and this leads
to larger lower bounds than just covering over F .

3.3 Nested Subspaces

Now suppose that we have nested subspaces F1 ⊂ · · · ⊂ Fm ⊂ Fm+1 ≡ R
n. Let Πj denote the

projector onto Fj. We define the surrogate as follows.

Definition 2 For given ε2 = (ε2,1, . . . , ε2,m) and ε∞ = (ε∞,1, . . . , ε∞,m) define

J (f) = {1 ≤ j ≤ m : ||f − Πjf ||2 ≤ ε2,j and ||f − Πjf ||∞ > ε∞,j

}
. (62)

Then define the surrogate set

F ?(f) = {Πjf : j ∈ J (f)} ∪ {f}. (63)

Definition 3 We say that B = {g : L ≤ g ≤ U} ≡ (L, U) has coverage 1 − α if

inf
f∈Rn

Pf{F ? ∩B 6= ∅} ≥ 1 − α. (64)

Define, Tj = ||Y − ΠjY ||2, f̂ = ΠĴY , where

Ĵ = min{j : Tj ≤ χ2
γ,n−dj

}, (65)

cj =

{
ωFj

(αj) + ε∞,j if 1 ≤ j ≤ m
zαm+1/n if j = m + 1.

(66)

and finally let B = (L, U) = f̂ ± cĴσ where
∑

j αj ≤ α.

THEOREM 3.5. If,
γ ≥ 1 − min

j
F0,n−dj

(F−1
nε22,j

,n−dj
(αj)) (67)

then
inf

f∈Rn
Pf{F ? ∩B 6= ∅} ≥ 1 − α. (68)
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Let wj = wFj
(αj) + ε∞,j. If w1 ≤ · · · ≤ wm+1 then

inf
f∈Fj

Pf{W ≤ wj } ≥ 1 − γ. (69)

If in addition ε2,j ≥ E(n− dj, αj, γ)(n− dj)
1/4n−1/2 and ε∞,j ≤ wFj

then

inf
f∈Fj

Pf{W ≤ 2w(ε2,j , ε∞,j, αj, γ, n, dj)} ≥ 1 − γ (70)

where w(ε2,j , ε∞,j, αj, γ, n, dj) is defined (49). Hence, the procedure adapts to within a constant
factor of the lower bound w given in Theorem 3.2.

COROLLARY 3.2. Suppose α1 = · · · = αm+1 = α/(m + 1). Then w1 ≤ · · · ≤ wm+1 so (69)
holds. Moreover, setting

ε2,j = E(n− dj, αj, γ)(n− dj)
1/4n−1/2 (71)

and
ε∞,j = wFj

(72)

in the above procedure, minimizes Volume(S(ε2, ε∞)) subject to satisfying (70).

EXAMPLE 3.1. Suppose that xi = i/n and let B1 = [0, 1/d], B2 = (1/d, 2/d], . . . , Bd =

((d− 1)/d, 1]. Write f = (f(xi) : i = 1, . . . , n) and let F denote the subspace of vectors f that
are constant over each Bj . Then ΩF =

√
d/n. The above procedure then produces a band with

width no more that O(
√
d/n) with probability at least 1 − γ.

4 Proofs

In this section, we prove the main results. We omit proofs for a few of the simpler lemmas.
Throughout this section, we write xn = O∗(bn) to mean that xn = O(cnbn) where cn increases at
most logarithmically with n.

The following lemma is essentially from Section 3.3 of Ingster and Suslina (2003).

LEMMA 4.1. Let M be a probability measure on R
n and let

Q(·) =

∫
Pf(·)dM(f)

where Pf(·) denotes the measure for a multivariate Normal with mean f = (f1, . . . , fn) and
covariance σ2I . Then

L1(Q,Pg) ≤
√∫ ∫

exp

{
n〈f − g, ν − g〉

σ2

}
dM(f)dM(ν) − 1. (73)
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In particular, if Q is uniform on a finite set Ω, then

L1(Q,Pg) ≤

√√√√
(

1

|Ω|

)2 ∑

f,ν∈Ω

exp

{
n〈f − g, ν − g〉

σ2

}
− 1. (74)

PROOF OF LEMMA 4.1. Let pf denote the density of a multivariate Normal with mean f and
covariance σ2I where I is the identity matrix. Let q be the density of Q:

q(y) =

∫
pf (y)dM(f).

Then,
∫

|pg(x) − q(x)|dx =

∫ |pg(x) − q(x)|√
pg(x)

√
pg(x)dx

≤
√∫

(pg(x) − q(x))2

pg(x)
dx =

√∫
q2(x)

pg(x)
dx− 1. (75)

Now,
∫

q2(x)

pg(x)
dx =

∫ (
q(x)

pg(x)

)2

pg(x)dx = Eg

(
q(x)

pg(x)

)2

=

∫ ∫
Eg

(
pf (x)pν(x)

p2
g(x)

)
dM(f)dM(ν)

=

∫ ∫
exp

{
− n

2σ2
(||f − g||2 + ||ν − g||2)

}
Eg

(
exp

{
εT (f + ν − 2g)/σ2

})
dM(f)dM(ν)

=

∫ ∫
exp

{
− n

2σ2
(||f − g||2 + ||ν − g||2)

}
exp

{
n∑

i=1

(fi − gi + νi − gi)
2/(2σ2)

}
dM(f)dM(ν)

=

∫ ∫
exp

{
n〈f − g, ν − g〉

σ2

}
dM(f)dM(ν)

and the result follows from (75). �

PROOF OF THEOREM 2.1.. Let N = |Ω| and let b = nmaxf∈Ω ||f − g||2. Let pf denote the
density of a multivariate Normal with mean f and covariance σ2I where I is the identity matrix.
Define the mixture

q(y) =
1

N

∑

f∈Ω

pf(y).

By Lemma 4.1,

∫
|pg(x) − q(x)|dx ≤

√√√√
(

1

N

)2 ∑

f,ν∈Ω

exp

{
n〈f − g, ν − g〉

σ2

}
− 1
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=

√(
1

N

)2 [
Neb2/σ2 +N(N − 1)

]
− 1

≤
√
eb2/σ2/N = ε.

Define two events, A = {` ≤ g ≤ u} and B = {` ≤ f ≤ u, for some f ∈ Ω}. Then,
A ∩ B ⊂ {wn ≥ a} where

a = min
f∈Ω

||g − f ||∞.

Since Pf{` ≤ f ≤ u} ≥ 1 − α for all f , it follows that Pf{B} ≥ 1 − α for all f ∈ Ω. Hence,
Q(B) ≥ 1 − α. So,

Pg{wn ≥ a} ≥ Pg{A ∩B} ≥ Q(A ∩B) − ε = Q(A) +Q(B) −Q(A ∪B) − ε

≥ Q(A) +Q(B) − 1 − ε ≥ Q(A) + (1 − α) − 1 − ε ≥ Pg{A} + (1 − α) − 1 − 2ε

≥ (1 − α) + (1 − α) − 1 − 2ε = 1 − 2α− 2ε.

So, Eg(wn) ≥ (1 − 2α− 2ε)a. �

PROOF OF THEOREM 2.2. Let g ∈ R
n be arbitrary, let

an = σ
√

log(nε2)

and define

Ω =

{
g + (an, 0, . . . , 0), g + (0, an, . . . , 0), . . . , g + (0, 0, . . . , an)

}
.

Then the conditions of Theorem 2.1 are satisfied with N = n, and hence

Eg(W ) ≥ (1 − 2α− 2ε) min
f∈Ω

||g − f ||∞ = (1 − 2α− 2ε)an. (76)

This is true for each g and hence (18) follows. The last statement of the theorem follows from
standard Gaussian tail inequalities. �

PROOF OF THEOREM 2.3. We construct the appropriate set Ω and apply Theorem 2.1. For
simplicity, we build Ω around g = (0, . . . , 0), the extension to arbitrary g being straightforward.
Set a = an from the statement of the theorem, and define

F (x) =

{
Lx 0 ≤ x ≤ a/L
2a− Lx a/L ≤ x ≤ 2a/L.

Note that F ∈ F(L) and that F minimizes ||F ||2 among all F ∈ F(L) with ||F ||∞ = a. For
simplicity, assume that 2aN/L = 1 for some integerN . Define F1(·) = F (·), F2(·) = F (·−δ),. . . ,
and FN(·) = F (· −Nδ). Let Ω(a) = {f1, . . . , fN} where fj = (Fj(x1), . . . , Fj(xn)). Now

n||fj||2 ≤
2na3

3L
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and so
en||fj ||2/σ2

N
≤ ε2.

Now apply Theorem 2.1.
To prove the last statement, we note that it is well known that if F̂ is a kernel estimator with

triangular kernel and bandwidth h = O(n−1/3) then

sup
f∈Θ

EF (||F̂ − F ||∞) ≤ C

(
log n

n

)1/3

≡ Cn

for some C > 0. Then B = (F̂ − Cn

α
, F̂ + Cn

α
) (restricted to xi = i/n) is valid by Markov’s

inequality and has the rate an. �

PROOF OUTLINE OF THEOREM 2.4. We will use the fact that an appropriately chosen wavelet
basis forms a basis for F . Let

Jn ∼ log2

(
n1/(2p+1)

logn

)
,

bn =
σ√
n

√
log(2Jnε2)

and
F (x) = bn2Jn/2ψ(2Jnx)

where ψ is a compactly supported mother wavelet. Then F (p) = bn2Jn/22pJnψ(p)(2Jnx) so that∫
(F (p))2 < c2 for all large n so that F ∈ F .

Let f = (F (xi), . . . , F (xn)). Then,

||f ||∞ = bn2Jn/2 = O∗(n−p/(2p+1))

and
√
n||f ||2 ∼ √

nbn. Let fk = (F (x1 − k∆), . . . , F (xn − k∆))T where ∆ is just large enough
so that the Fk’s are orthogonal. Hence, ∆ ≈ 1/N where N ∼ 2Jn. Finally, set Ω = {f1, . . . , fN}.
Then,

en||f ||2/σ2

N
= enb2n/σ2

2Jn ≤ ε2

for each f ∈ Ω. The lower bound follows from Theorem 2.1.
A fixed-width procedure that achieves the bound is

`i = f̂i − cnzα/n, ui = f̂i + cnzα/n.

where f̂i = F̂ (xi),

F̂ (x) =
∑

j

α̂jφj(x) +
J∑

j=1

∑

k

β̂jkψjk(x),

α̂j = n−1
∑

i Yiφj(xi), β̂jk = n−1
∑

i Yiψjk(xi) and cn =

√
maxx Var(F̂ (x)). �
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PROOF OUTLINE OF THEOREM 2.5. Again, we use the fact that an appropriately chosen
wavelet basis forms a basis for F . Let

Jn ∼
log2

c
√

n

σ
√

log 2J ε2

ξ + 1
2
− 1

p

.

Let
an =

σ√
n

√
log 2Jε2

and define F (x) = an2J/2ψ(x), where ψ is a compactly supported mother wavelet. Then, ||f || =

an, ||f ||∞ = an2J/2, and ||F ||ξp,q ≤ c − δ for all large n. Take Ω around g to be non-overlapping
translations of F added to g. Then N ∼ 2J and conditions of Theorem 2.1 hold. Moreover,

an = O∗(n−1/(1/p−ξ−1/2)).

The bound is achieved by Markov applied to the soft-thresholded wavelet estimator with universal
thersholding. �

PROOF OF LEMMA 3.3. Note that

min

{
‖v‖ : v ∈ F , ‖v‖∞ = 1

}
= min

v∈F

‖v‖
‖v‖∞

(77)

=
1

maxv∈F
‖v‖∞
‖v‖

, (78)

=
1

max

{
‖v‖∞ : v ∈ F , ‖v‖ = 1

} . (79)

If v solves one of these problems then εv solves the more general version in the statement of the
lemma. It now suffices to show just the second equality.

Now, ΩF = maxi Ωi where

Ωi =
〈ei,ΠFei〉
‖ei‖ ‖ΠFei‖

=
‖ΠFei‖
‖ei‖

.

Maximizing fi = eT
i f for f ∈ F and ‖f‖ ≤ 1 is equivalent to maximizing n〈ei, f〉 = n〈ΠFei, f〉.

The maximum subject to the constraint occurs at f ? = Πei/‖Πei‖. Hence, the maximum is eT
i f

? =

(Πei)
Tf ? = n‖Πei‖2/‖Πei‖ = n‖Πei‖2/‖Πei‖‖ei‖

‖ei‖ =
√
nΩi. Maximizing over i completes the

proof. �

PROOF OF LEMMA 3.6. Let f, g ∈ A be such that ||f − g||p ≤ ε. Then,

Pg{L ≤ f ≤ U } = Pf{L ≤ f ≤ U } + Pg{L ≤ f ≤ U } − Pf{L ≤ f ≤ U } (80)

≥ Pf{L ≤ f ≤ U } − dTV(Pf , Pg) (81)

≥ 1 − α−Mp(||f − g||p, A) (82)

≥ 1 − α−Mp(ε(f, p), A). (83)
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We also have that Pg{L ≤ g ≤ U } ≥ 1 − α. Hence,

Pg{L ≤ g ≤ U, L ≤ f ≤ U } ≥ Pg{L ≤ g ≤ U } + Pg{L ≤ f ≤ U } − 1 (84)

≥ 1 − α + 1 − α−Mp(ε(f, p), A) − 1 (85)

≥ 1 − 2α−Mp(ε(f, p), A). (86)

The event {L ≤ g ≤ U, L ≤ f ≤ U } implies that W ≥ ‖g − f‖∞. Hence,

Pf{W > ||f − g||∞} ≥ 1 − 2α−Mp(ε(f, p), A)

≥ 1 − 2α−Mp(ε(f, p), A)

≥ 1 − 2α−Mp(ε, A).

It follows then that
Pf{W > ε(f,∞)} = inf

g
Pf{W > ||f − g||∞} . (87)

and thus
inf

f∈A0

Pf{W > ε(f,∞)} ≥ 1 − 2α− sup
f∈A0

Mp(ε(f, p), A). (88)

This proves the first claim. But ε(f,∞) ≥ ε(f, p) for any 1 ≤ p ≤ ∞. The final claim follows
immediately. �

PROOF OF LEMMA 3.7. Choose f ∈ A0. Choose g ∈ A1 to minimize dTV(pf , pg) such to
such that ||f − g||∞ = ε. Hence, dTV(pf , pg) = m2(ε, A0, A1). Then,

Pf{L ≤ g ≤ U } = Pf{L ≤ f ≤ U } + Pf{L ≤ f ≤ U } − Pf{L ≤ f ≤ U } (89)

≥ Pf{L ≤ f ≤ U } − dTV(Pf , Pg) (90)

≥ 1 − α−m2(ε, A0, A1). (91)

We also have that Pf{L ≤ f ≤ U } ≥ 1 − α. Hence,

Pf{L ≤ f ≤ U, L ≤ g ≤ U } ≥ Pf{L ≤ f ≤ U } + Pf{L ≤ g ≤ U } − 1 (92)

≥ 1 − α + 1 − α−m2(ε, A0, A1) (93)

≥ 1 − 2α−m2(ε, A0, A1). (94)

The event {L ≤ f ≤ U, L ≤ g ≤ U } implies that W ≥ ‖f − g‖∞. Hence,

Pf{W > ||f − g||∞} ≥ 1 − 2α−m2(ε, A0, A1). (95)

It follows then that
sup
f∈A0

Pf{W > ε} ≥ 1 − 2α−m2(ε, A0, A1). (96)

�
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PROOF OF THEOREM 3.1. First, we computem2(ε,F ,F). Note that dTV (f, 0) = τ(
√
n‖f‖).

Hence, m2(ε,F ,F) = τ(
√
nv) where v = min{||f || : f ∈ F , ‖f‖∞ = ε}. By Lemma 3.3,

v = ε/(
√
nΩF ). It follows by Lemma 3.6 that

sup
f∈F

P{W > w} ≥ 1 − 2α− τ

(
w

ΩF

)
. (97)

Let w∗ = Ωτ−1(1 − 2α− γ). It follows that if w < w∗ then inff∈F P{W ≤ w} < 1 − γ which is
a contradiction.

That the proposed band has correct coverage follows easily. Now, (ΠΠT )ii ≤ ΩcF and zα/2n ≤√
c logn for some c and the claim follows. �

PROOF OF THEOREM 3.2. We break the argument up into three parts.

Part I. First, we computem2(ε,F ,F). Note that dTV (f, 0) = τ(
√
n‖f‖). Hence,m2(ε,F ,F) =

τ(
√
nv) where v = min{||f || : f ∈ F , ‖f‖∞ = ε}. By Lemma 3.3, v = ε/(

√
nΩF). It follows

by Lemma 3.6 that

sup
f∈F

P{W > w} ≥ 1 − 2α− τ

(
w

ΩF

)
. (98)

Let w∗ = Ωτ−1(1 − 2α− γ). It follows that if w < w∗ then inff∈F P{W ≤ w} < 1 − γ which is
a contradiction.

Part II. Case (a.) ε2 ≤ ε∞/
√
n. First, note that m2(w,F , V ) = τ(

√
n w√

n
) = τ(w) for

w ≤ √
nε2, because the minimum two-norm for a given infinity-norm is achieved on the coordinate

axis. Second, let A0 = F and A1 = V in Lemma 3.6. Then, for w ≤ √
nε2,

sup
f∈F

P{W > w} ≥ 1 − 2α− τ(w) (99)

Let w0 =
√
nmin(n−1/2τ−1(1 − 2α− γ), ε2), then supf∈F P{W > w0} ≥ γ.

Case (b.) ε2 > ε∞/
√
n. First, note that m2(w,F , V ) = τ(

√
n w√

n
) = τ(w) for w ≤ ε∞.

Second, let A0 = F and A1 = V in Lemma 3.6. Then, for w ≤ ε∞,

sup
f∈F

P{W > w} ≥ 1 − 2α− τ(w) (100)

Let w0 = min(τ−1(1 − 2α− γ), ε∞), then supf∈F P{W > w0} ≥ γ.

Part III. The argument here is based on an argument in Baraud (2004). Define a rejection region

R = {W > w} ∪ {||f̂ − Πf̂ ||2 > W}. (101)

Now, for any f ∈ F , f ? = f , ||f̂ − Πf̂ ||2 ≤ ||f̂ − f ||2 and

Pf{R} ≤ Pf{W > w} + Pf

{
||f̂ − Πf̂ ||2 > W

}
(102)

≤ γ + Pf

{
||f̂ − Πf̂ ||2 > W

}
≤ γ + Pf

{
||f̂ − Πf̂ ||2 > W

}
(103)

≤ γ + Pf

{
||f − f̂ ||2 > W

}
= γ + Pf

{
||f ? − f̂ ||2 > W

}
(104)

≤ γ + Pf

{
||f ? − f̂ ||∞ > W

}
≤ γ + α (105)
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which bounds the type I error of R.
Now let f be such that ||f − Πf ||2 ≥ max{2w, ε2}. Hence, ||f − Πf ||2 ≥ ε2 so that f ? = f .

Then,
||f̂ − Πf̂ ||2 ≥ ||f − Πf̂ ||2 − ||f − f̂ ||2 ≥ 2w − ||f − f̂ ||2. (106)

Hence,

Pf{Rc} = Pf

{
||f̂ − Πf̂ ||2 ≤ W,W ≤ w

}
≤ Pf

{
||f̂ − Πf̂ ||2 ≤ w,W ≤ w

}
(107)

≤ Pf

{
||f − f̂ ||2 ≥ w,w ≥ W

}
≤ Pf

{
||f − f̂ ||2 ≥ W

}
(108)

= Pf

{
||f ? − f̂ ||2 ≥ W

}
≤ Pf

{
||f ? − f̂ ||∞ ≥ W

}
(109)

≤ α. (110)

Thus, R defines a test for H0 : f ∈ F with level α + γ whose power on the complement of the
sphere of radius max{2w, ε2} is at least 1 − α. But, from Baraud (2004), this implies that

max{w, ε2/2} ≥ κ(α, γ)(n− d)1/4n−1/2. (111)

�

PROOF OF THEOREM 3.3. The volume is minimized by making ε∞ as large as possible
and ε2 as small as possible. To achieve the lower bound on the width requires ε∞ ≤ wF and
ε2 ≥ 2κ(α, γ)(n− d)1/4n−1/2. �

PROOF OF LEMMA 3.2. Q is the solution, with respect to c, to ξ = 1 − F0,m(r(c)) where
the function r(c) = F−1

c
√

m,m
(β)) is monotonically increasing in c. Also, F0,m(r(0)) = β and

F0,m(r(∞)) = 1 so a solution exists since 0 < β < 1 − ξ < 1. Now we bound Q from above.
To upper bound Q it suffices to find c such that

F−1
c
√

m,m
(β) ≥ F−1

0,m(1 − ξ). (112)

From Birgé (2001) we have

F−1
z,d (u) ≤ z + d+ 2

√
(2z + d) log(1/(1 − u)) + 2 log(1/(1 − u)) (113)

F−1
z,d (u) ≥ z + d− 2

√
(2z + d) log(1/u). (114)

Hence,

F−1
c
√

m,m
(β) ≥ m + c

√
m− 2

√
(2c

√
m+m) log

1

β
(115)

F−1
0,m(1 − γ) ≤ m + 2

√
m log

1

γ
+ 2 log

1

γ
. (116)
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It suffices to find c that satisfies

m + c
√
m− 2

√
(2c

√
m +m) log

1

β
≥ m + 2

√
m log

1

γ
+ 2 log

1

γ
, (117)

or equivalently,

c ≥ 2

√(
c√
m

+ 1

)
log

1

β
+ 2

(√
log

1

γ
+ log

1

γ

)
. (118)

The right hand side of the last inequality is largest whenm = 1, and equality can be achieved when
m = 1 at some Λ(β, ξ) for any β, ξ satisfying the stated conditions. Equality can be achieved then
for any m at some Q(m, β, ξ) ≤ Λ(β, ξ). This proves the first claim. The second claim follows
immediately by inspection. �

PROOF OF THEOREM 3.4. Let A =
{
T ≤ χ2

γ,n−d

}
. Then,

Pf{f ? /∈ B} = Pf{f ? /∈ B,A} + Pf{f ? /∈ B,Ac} .

We claim that Pf{f ? /∈ B,A} ≤ α/2 and Pf{f ? /∈ B,Ac} ≤ α/2. There are four cases.

Case I. f ∈ F . Then f = f ? and Pf{f /∈ B,Ac} ≤ Pf{Ac} ≤ α/2. Pf{f /∈ B,A} ≤
Pf{f /∈ B} = PΠf{Πf /∈ B} ≤ PΠf

{
||f̂ − Πf || > wF

}
≤ α/2.

Case II. f ∈ V − F where V = {f : ‖f − Πf‖ ≤ ε2, ‖f − Πf‖∞ ≤ εε}. Again, f = f ?.
First, Pf{f /∈ B,Ac} ≤ Pf

{
||Y − f ||∞ > zα/2n

}
≤ α/2. Next, we bound Pf{f /∈ B,A}. Note

that f̂ = ΠY ∼ N(g, σ2ΠΠT ), where g = Πf . Then f̂i ∼ N(gi,Ω
2
i ). Let B0 = (L+ ε∞, U − ε∞).

Then, Πf ∈ B0 implies f ∈ B and Pf{ /∈ B,A} ≤ Pf{Πf /∈ B0} ≤ α/2.

Case III. f /∈ V , ||f − Πf || ≤ ε2 and ||f − Πf ||∞ > ε∞. In this case, f ? = Πf . Then
Pf{f ?, f ∈ Bc, Ac} ≤ Pf{f ∈ Bc, Ac} ≤ α/2. Also, Pf{f ?, f ∈ Bc, A} ≤ Pf{f ? /∈ B} =

PΠf{Πf /∈ B} ≤ PΠf

{
||f̂ − Πf || > wF

}
≤ α/2.

Case IV. f /∈ V and ||f − Πf || > ε2. In this case, f ? = f . But

Pf{f /∈ B,A} ≤ Pf{A} ≤ Ff−Πf,n−d(χ
2
γ,n−d) ≤ Fε2,n−d(χ

2
γ,n−d) ≤ α/2

and
Pf{f /∈ B,Ac} ≤ Pf{f /∈ B,Ac} ≤ α/2.

Thus, Pf{f ? 6∈ B} ≤ α. Equation (55) follows since Pf

{
T ≤ χ2

γ,n−d

}
≥ 1− γ for all f ∈ F .

�

PROOF OF THEOREM 3.5. Note that Pf{f ? ∩ B = ∅} =
∑

j Pf

{
f ? ∩ B = ∅, Ĵ = j

}
. We

show that Pf

{
f ? ∩ B = ∅, Ĵ = j

}
≤ αj for each j. There are three cases.
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Case I. ||f − Πjf || > ε2,j. Then,

Pf

{
f ? ∩B = ∅, Ĵ = j

}
≤ Pf

{
Ĵ = j

}
≤ Ff−Πjf,n−dj

(χ2
γ,n−dj

)

≤ Fε2,j ,n−dj
(χ2

γ,n−dj
)

≤ αj

due to (67).
Case II. ||f − Πjf || ≤ ε2,j and ||f − Πjf ||∞ ≤ ε∞,j. So,

Pf

{
f ? ∩ B = ∅, Ĵ = j

}
≤ Pf

{
f /∈ B, Ĵ = j

}

≤ Pf

{
||f − f̂ ||∞ > wFj

+ ε∞,j

}

≤ Pf

{
||f − Πjf ||∞ + ||Πjf − ΠjY ||∞ > wFj

+ ε∞,j

}

≤ Pf

{
||Πjf − ΠjY ||∞ > wFj

}

= PΠjf

{
||Πjf − ΠjY ||∞ > wFj

}

≤ αj.

Case III. ||f − Πjf || ≤ ε2,j and ||f − Πjf ||∞ > ε∞,j. Now,

Pf

{
f ? ∩B = ∅, Ĵ = j

}
≤ Pf

{
Πjf /∈ B, Ĵ = j

}

≤ PΠjf

{
||f̂ − Πjf || > wFj

}

≤ αj.

To prove (69), suppose that f ∈ Fj. Then, Pf

{
Ĵ > j

}
≤ γ. But, as long as Ĵ ≤ j, W =

w
Ĵ
(αĴ)+ε∞,Ĵ ≤ w

|
(αj)+ε∞,j. The last statement follows since, when ε2,j ≥ Q(n−dj, α/2, γ)(n−

dj)
1/4n−1/2

�

PROOF OF LEMMA 3.9. First note that if B is a ball in R
n in any norm, then B − B = 2B.

Second, we have that

ω(u) = sup{|Tg| : ‖g‖2 ≤ u, g ∈ V − V } (119)

= sup{|Tg| : ‖g‖2 ≤ u, g ∈ V (2ε2, 2ε∞)}. (120)

To see the latter equality, note that if g, h ∈ V , then we can write g−h = f + δ1− δ2 where f ∈ F
and δi are in B⊥

k (0, εk) for k = 2,∞. Thus, δ1 − δ2 is in 2B⊥
2 (0, ε2) ∩ 2B⊥

∞(0, ε∞).
Set B∗(f) = B⊥

2 (f, 2ε2) ∩B⊥
∞(f, 2ε∞). We have that

ω(η,F) = sup{f1 : ‖f‖2 ≤ η, f ∈ F} (121)

ω(η, B∗(0)) = sup{f1 : ‖f‖2 ≤ η, f ∈ B∗(0)}. (122)
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For any g ∈ V (2ε2, 2ε∞), we can write g = g1 + g2 where g1 ∈ F and g2 ∈ B∗(0) and the two
functions are orthogonal. Then,

w(u, V ) = sup

{
T (g) : g ∈ V (2ε2, 2ε∞), ‖g‖2 ≤ u

}
(123)

= sup
0≤c≤u

{
T (g1 + g2) : ‖g1‖2 ≤

√
u2 − c2, ‖g2‖2 ≤ c2, g1 ∈ F , g2 ∈ B∗(0)

}
(124)

≤ sup
0≤c≤u


 sup

g1∈F

‖g1‖2≤
√

u2−c2

T (g1) + sup
g2∈B∗(0)
‖g2‖2≤c

T (g2)


 (125)

= sup
0≤c≤u

[
ω(

√
u2 − c2,F) + ω(c, B∗(0))

]
. (126)

Moreover, equality can be attained for each c by choosing g1 and g2 to be the maximizers (or
suitably close approximants thereof) of each term in the last equation. Consequently,

ω(u) = sup
0≤c≤u

ω(
√
u2 − c2,F) + ω(c, B∗(0)). (127)

To derive ω(η, B∗(0)), note that f = ((η∧ ε2)
√
n∧ ε∞, 0, 0, . . . , 0) maximizes f1 subject to the

norm constraint. Hence, ω(η, B∗(0)) = min((η ∧ ε2)
√
n, ε∞). For ω(η,F), let e = (1, 0, . . . , 0) ∈

R
n. Recall that ΩF = 〈e,ΠFe〉

‖e‖ ‖ΠFe‖ = ‖ΠFe‖
‖e‖ , which is between 0 and 1. Maximizing eTf for f ∈ F

and ‖f‖2 ≤ η is equivalent to maximizing n〈e, f〉 = n〈ΠFe, f〉. The maximum subject to the
constraint occurs at f ? = ηΠe/‖Πe‖ Hence, ω(η,F) = η

√
nΩF . Note that η is in terms of

the normalized two norm; in the “natural” (root sum of squares) norm, the modulus would be
ω\(u,F) = uΩF .

It follows that

ω(u, V ) = sup
0≤c≤u

[ω(
√
u2 − c2,F) + ω(c, B∗(0))] (128)

= sup
0≤c≤u

[√
nΩF

√
u2 − c2 + min((c ∧ ε2)

√
n, ε∞)

]
(129)

=
√
n sup

0≤c≤u

[
ΩF

√
u2 − c2 + min(c, ε2 ∧ (ε∞/

√
n))
]

(130)

=
√
n

(
uΩ

√
Ω2

1 + Ω2
+ min(

u√
1 + Ω2

, ε2 ∧ (ε∞/
√
n))

)
(131)

=

(
u
√
nΩ

√
Ω2

1 + Ω2
+ min

(
u
√
n√

1 + Ω2
, ε2

√
n, ε∞

))
(132)

because the supremum over c is maximized at c = u/(1 + Ω2). In the natural two norm, we have

ω\(u, V ) =

(
uΩ

√
Ω2

1 + Ω2
+ min

(
u

Ω

√
Ω2

1 + Ω2
, ε2,\, ε∞

))
. (133)

�
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5 Discussion

We have shown that adaptive confidence bands for f are possible if coverage is replaced by surro-
gate coverage. Of course, there are many other ways one could define a surrogate. Here, we briefly
outline a few possibilities.

Wavelet expansions of the form

f(x) =
∑

j

αjφj(x) +
∑

j

∑

k

βjkψjk

lend themselves quite naturally to the surrogate approach. For example, one can define

f ?(x) =
∑

j

αjφj(x) +
∑

j

∑

k

s(βjk)ψjk

where s(x) = sign(x)(|x| − λ)+ is the usual soft-thresholding function.
For kernel smoothers and local polynomial smoothers f̂h that depends on a bandwidth h, a

possible surrogate is f ? = E(f̂h?) where h? is the largest bandwidth h for which f̂h passes a
goodness of fit test with high probability. In the spirit of Davies and Kovac (2001), one could take
the test to be a test for randomness applied to the residuals.

Motivated by ideas in Donoho (1988) we can define another surrogate as follows. Let us switch
to the problem of density estimation. Let X1, . . . , Xn ∼ F for some distribution F . The goal is
define an appropriate surrogate band for the density f . Define the smoothness functional S(F ) =∫

(f ′′(x))2dx. To make sure that S(F ) is well defined for all F we borrow an idea from Donoho
(1988). Let Φh denote a Gaussian with standard deviation h and define S(F ) = limh→0 S(F ⊕
Φh) where ⊕ denote convolution. Donoho shows that S is then a well-defined, convex, lower
semicontinuous functional.

Let F̂n be the empirical distribution function and let B = B(F̂ , εn) = {F : ||F − F̂n|| ≤ εn}
where || · || is the Kolmogorov-Smnirnov distance and εn is the 1 − β quantile of ||U − Un||
where U is the uniform distribution and Un is the empirical from a sample from U . Thus, B is a
nonparametric, 1 − β confidence ball for F . The simplest F ∈ B is the distribution that minimize
S(F ) subject to F ∈ B. We define the surrogate F ? to be the distribution that minimizes S(F )

subject to F belonging to BF , where BF is a population version of B. We might then think of F ?

as the simplest distribution that is not empirically dinstinguishable from F . A natural definition of
BF might be BF = {G : ||F − G|| ≤ εn}. But this definition only makes sense for fixed radius
confidence sets. Another definition is BF = {G : PF{G ∈ B} ≥ 1/2}.

To summarize, we define
F ? = argminF∈BF

S(F ) (134)

where

BF =

{
G : PF

{
G ∈ B(F̂n, εn)

}
≥ 1/2

}
(135)

and B(F̂n, εn) = {G : ||F̂n −G|| ≤ εn}. Let

Γ = ∪{G? : G ∈ B(F̂n, εn)}. (136)
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Then
`(x) = inf

F∈Γ
F ′(x), u(x) = sup

F∈Γ
F ′(x) (137)

defines a valid confidence band for the density of F ?.
Let us also mention average coverage (Wahba 1983; Cummins, Filloon, Nychka 2001). Bands

(L, U) have average coverage if Pf{L(ξ) ≤ f(ξ) ≤ U(ξ)} ≥ 1 − α where ξ ∼ Uniform(0, 1).
A way to combine average with the surrogate idea is to enforce something stronger than average
coverage such as

Pf

{
L(ξ) ≤ f(ξ) ≤ U(ξ) and f̂ � f

}
≥ 1 − α

where f̂ = (L + U)/2 and f̂ � f means that f̂ is simpler than f according to a partial order �,
for example, f � g if

∫
(f ′′)2 ≤

∫
(g′′)2.
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