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Preliminaries

•The Expanding Universe

Scale factor a(t) indicates relative expansion of the universe.

(a(t0) = 1 where t0 is current age of universe.)

Redshift z is an observable shift in the wavelength of light from a distant object

that is induced by the expansion of the universe.

1 + z =
λobs

λemit

=
a(tobs)

a(temit)
.

Hubble parameter H(t) =
ȧ(t)

a(t)
. (H0 = H(t0) is the Hubble “constant”.)

•The Distance-Redshift Relation

The relationship between objects’ distances and redshifts contains fundamental

information about the Universe’s geometry.

Hubble’s Law, z = H0d, is reasonably accurate for small distances d.
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An Accelerating Universe

• Accelerating Expansion (Reiss et al. 2004, Perlmutter et al. 2004)

Type Ia supernovae can serve as a “standard candle”.

Observations of many supernovae reveal that the expansion of the universe is

accelerating.

This conclusion is supported by other, independent, measurements, including the

Cosmic Microwave Background (Spergel et al. 2003) and large-scale structure

(Verde et al. 2002).

• “Missing” Matter

Studies of galaxies and galaxy clusters suggest that the density of matter (dark

and light) is ΩM ≈ 0.3 times the critical density (ρcrit = 3H2/8πG).

The CMB data from WMAP are consistent (so far) with Gaussian primordial

density perturbations like those predicted by inflationary models.

This seems to imply the existence of another field ρDE with density ΩDE ≈ 0.7

times the critical density.

But is that true?



What’s Going On?

• One satisfying explanation would be that ρDE corresponds to the quantum

vacuum energy.

• Einstein’s “mistake,” Vacuum Energy, and the Cosmological Constant Problem.

• Possible explanations:

– Mistaken assumptions, models, or data analysis.

(Is the universe really accelerating? Is the mismatch between vacuum energies so large?)

– A failure of General Relativity.

(Does GR hold over cosmological scales?)

– Environmental (Anthropic) Selection.

(Are there domains with different cosmological constants?)

– (Dynamical) Dark Energy

(Does the cosmological constant vary over time?)

(See Carrol 2003 for a nice discussion of these hypotheses and the arguments

for/against them.)



Dark Energy (cont’d)

•Dark Energy is a smoothly-distributed energy density that

dominates the universe (∼ 74% versus ∼ 4% for baryonic matter)

and provides a negative pressure acting in opposition to gravity.

• Fundamental questions:

– What is the nature of dark energy?

– Is it constant or dynamical?

– How do we measure dark energy?

– What can we infer about dark energy from these data?

– What are the implications for cosmological and particle-physics models?



Dark Energy (cont’d)

•What does the acceleration imply about dark energy?

Let ρ = ρmatter + ρradiation + ρDE + · · · be the total energy density in the universe.

Friedmann equation:

H2(t) =

(
ȧ(t)

a(t)

)2

=
8πG

3
ρ−

κ

a2(t)

or equivalently,

ȧ2 =
8πG

3
a2ρ− κ.

Acceleration implies that a2ρ must increase.

Neither matter (ρmatter ∝ a−3) nor radiation (ρradiation ∝ a−4) can do this.

A cosmological constant (ρDE ∝ a0) could.

Note that ΩM/ΩDE ∝ a−3. This gives rise to the Coincidence Problem.



Quantifying Dark Energy: Equation of State

We can attempt to make inferences about ρ directly.

Alternatively, we can look at the equation of state (cf. ideal gas law).

Let pDE and ρDE be the pressure and energy density of dark energy,

then the equation of state w relates these by

pDE = wρDE.

For a cosmological constant, w = −1.

Work = −pDE∆V

∆Energy = ρDE∆V

=⇒ pDE = −ρDE



The Equation of State (cont’d)

In the special case where w = w0 is constant, then pDE = w0ρDE.

Conservation of energy implies:

ρDE ∝ a−3(1+w0).

If w0 = −1, the dark energy density stays constant with time. If w0 > −1, it

decreases. And If w0 < −1, it grows.

Cosmologists often restrict the possible energy-momentum tensors with various

“energy conditions.” A commonly used such condition requires w ≥ −1, and

most cosmological models follow suit.

But it is possible for this condition to be violated, at least over certain time scales.

We thus have very little information about the structure of w.

Aside: from the Friedmann equations

ä

a
= −

4πG

3
(1 + 3w)ρ,

so the Universe will accelerate if w < −1/3, and a(t) ∝ t
2
3(1+w).



Measuring Dark Energy

•Type Ia Supernovae

• Abundances of galaxy clusters (mass function of dark matter

halos).

How this abundance evolves gives information about a and the distance-redshift

relation.

• Baryon acoustic oscillations

Standing wave pattern 140 Mpc, gives standard ruler.

• Integrated Sachs-Wolfe Effect

•Weak Lensing



Measuring Dark Energy: Type Ia Supernovae

Type Ia Supernovae offer standard candles (really standardizable
candles) that can help us probe the distance-redshift relation.

• All Type Ia SNe have the same mechanism and thus similar peak brightness

There remains about 40% scatter in peak brightness among nearby SNe.

• There is a strong correlation between peak brightness and the time it takes to

decrease in brightness

Dimmer SNe decay more rapidly, brighter SNe decay more slowly. This allows

one-parameter fit that reduces scatter significantly.

• Potential systematic errors are thought to be small

Main sources: i. intrinsic differences between Type Ia SNe at low and high

redshift and ii. extinction from intergalactic dust (reddening)

• Corroboration with other independent measurements

Especially CMB and large-scale structure.



Type Ia Supernovae (cont’d)

•The supernova data give us a way to infer the equation of state

•Observe distance modulus (m −M) and redshift for a collection

of type Ia SNe.

• Express in terms of co-moving distance r, assuming a flat universe.

•This yields

Yi = log10 r(zi) + σiεi, i = 1, . . . , n,

where r is the co-moving distance at each redshift zi, and where

the σi’s are taken as known.

We consider r “observable” because it can be directly estimated

from the observed data.



The Data
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Data from Davis et al 2007.



Connect to the Equation of State

The reconstruction equation

w(z) =
H2

0Ωm(1 + z)3 + 2
3(1 + z)r′′(z)/(r′(z))3

H2
0Ωm(1 + z)3 − 1/(r′(z))2

− 1.

We can solve this differential equation to produce r(z) as a functional

of w with r(0) = 0 and

r(z) = H−1
0

∫ z

0
ds

[
ΩM(1 + s)3 + (1 − ΩM)(1 + s)3 e−3

∫ s
0
−w(u)
1+u du

]−1
2

where H0 is the Hubble constant and ΩM is the density of matter

relative to the critical density.

This equation shows that inference for w from the supernova data

Y is a nonlinear inverse problem.
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Inference for the Equation of State

•There is a variety of competing cosmological models that can be
distinguished via inference from w. This is a key goal.

– Cosmological constant (w ≡ −1)

– Topological defect (w ≡ −1/3 or w ≡ −2/3)

– Quintessence (various, roughly freezing w′(z) > 0, thawing w′(z) < 0)

– Cardassian models (w(0) < −1)

– . . .

•Most methods for inferring w from Type Ia data fall into two
groups:

A. Infer ρDE/ρcrit using polynomial or nonparametric models for r and r′.

B. Infer w from the reconstruction equation using polynomial or nonparametric

models for r, r′, r′′.

All of these require estimating at least one derivative. And

derivative estimation is hard.



Derivative Estimation is Hard

We can think of derivative estimation as an ill-posed inverse problem.

Suppose we have data

Yi = F (zi) + σiεi

and want to make inferences about f ≡ F ′. Then we can write (in

vector form)

Y = Kf + Σ1/2ε

where the operator K = (K1, . . . , Kn) maps functions to R
n and

where Ki =
∫ zi
0 .

Create an orthonormal basis φ1, . . . , φn from the eigenfunctions of

K∗K with associated eigenvalues λ1 ≥ · · · ≥ λn ≥ 0.

Here, K∗ is the adjoint of K given by

K∗u =
n∑

i=1

ui1[0,zi]
.



Derivative Estimation (cont’d)

Then,

f =
n∑

j=1

βjφj + f⊥

=
n∑

j=1

λ
−1/2
j 〈uj, Kf〉φj + f⊥,

where uj = Kφj/‖Kφj‖. The f⊥ component is not estimable.

Using an optimal shrinkage scheme (cf. Donoho 1995),

MSE ≈
n∑

j=1

min(β2
j , λ

−1
j τ2

j ),

where τ2
j =

∑
k u

2
jkσ

2
k.

Large components at high order are bad news!



A New Method

Instead of doing derivative estimation, we use the relationships
between w and r

r = T (w;H0,ΩM) ≡ H−1
0

∫ z

0
ds

[
ΩM(1 + s)3 + (1 − ΩM)(1 + s)3 e−3

∫ s

0

−w(u)
1+u

du
]−1

2

and treat it as a nonlinear inverse problem.

The structure of T gives us several useful features:

1. r(0) = 0

2. (1 + z)−3/2/H0 ≤ r′(z) ≤ (1 + z)−3/2/
√
H2

0Ωm.

In particular, r is monotone increasing.

3. When w > −1/(1 − ΩM), r is concave.

4. T is monotone (technically antitone) in w.

These allow us to use a variety of shape restrictions in our inferences.



Hypothesis Testing

Using shape restrictions, we can directly test a variety of hypotheses
about w

A. Simple equalities for w: w = w0,

B. Inequalities for w: w0 ≤ w ≤ w1,

C. Inequalities for w′: w′
0 ≤ w′ ≤ w′

1,

D. Inclusion: w ∈ V for a linear space V , and

These hypotheses correspond directly to several cosmological models.

For example, thawing models in quintessence must satisfy

1 + w(0)

(1 + z)3
− 1 ≤ w(z) ≤

1 + w(0)

1 + z
− 1,



Hypothesis Testing: Method

The basic method

0. Select a small 0 < α < 1.

2. Construct a 1 − α confidence set C for the unknown vector (r(z1), . . . , r(zn)).

3. Construct the set R0 of vectors (r0(z1), . . . , r0(zn)) where r0 is a co-moving

distance function produced by an equation of state consistent with the null

hypothesis

4. Reject the null hypothesis if C ∩R0 = ∅.

In practice, the sets in Steps 1 and 2 need not be constructed

explicitly, and the procedure can be made computationally efficient

for a broad range of hypotheses.

In Step 1, we adapt the shape-restricted confidence set from Davies

et al (2007) and Baraud (2004).



Hypothesis Testing: Results

Current data do not allow sharp distinctions between models.

Model Rejected At Level

32% 13% 5% 1%

Cosmological Constant yes no no no

Frustrated Cosmic Strings yes yes yes no

Domain Walls yes no no no

Nonaccelerating yes no no no

Quintessence Thawing no no no no

Quintessence Freezing no no no no

Constant w no no no no

The cosmological constant model cannot be ruled out with current

data.

Note: These results are as good as what one gets under very

optimistic assumptions (e.g., known parametric form).



Estimation

To estimate w, again use the relation r = T (w;H0,ΩM).

For a given parameteric model for w, w(z) = −
∑
j βjψj(z), we get

a nonlinear, parametric form for r:

r(z) = H−1
0

∫ z

0
ds

[
Ωm(1 + s)3 + (1 − Ωm)(1 + s)3 e

−3
∑

j
βjψ̃j(s)

]−1
2

,

where ψ̃j(s) =
∫ s
0 ψj(u)/(1 + u)du.

This gives a likelihood over w, ΩM, andH0. We can fit this efficiently,

and the results automatically satisfy the shape constraints.



Estimation (cont’d)

For a non-parametric analysis, we consider a collection M1,M2, . . .

of parametric models of increasing dimension.

In all such models we can get reasonable fits, we then select an

estimator by minimizing a measure of empirical risk (or alternatively

by sequential testing).

Good confidence sets can be constructed under this scheme. Some

theoretical details need to be better understood to get optimal

performance.



Example Basis

Even the low dimensional models cover the whole space
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Dimensionality Estimated Well

Example simulation (this is typical):

1 2 3 4 5 6 7

94
5

95
0

95
5

96
0

96
5

97
0

97
5

Dimension

B
IC



Road Map

1. Preliminaries

2. Dark Energy

3. Inference for the Dark Energy Equation of State

4. Fisher Follies



Fisher Follies

It is common practice in physics to use the eigenvectors of the

model’s Fisher Information matrix to construct a basis.

The k basis elements with the largest eigen values are selected where

k can be chosen by some measure of empirical risk.

In an inverse problem like this, the Fisher basis can be very poor

because it is not adapted to the forward mapping.

For T , structure at high z is poorly resolved. The Fisher basis

requires large k to fit well, resulting in significant variance inflation.



Fisher

Fisher basis elements with k = 1, 5, 10
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Fisher

Fisher best fits with w ≡ −1 and k = 1, 5, 10.
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Fisher

Fisher dimensionality estimate, same simulation as above.
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Take-Home Points

•Nonparametric methods are essential here. We know very little a

priori about w.

• Current data are insufficient to conclusively distinguish among

competing models. This should change with new data coming

down the pipeline.

Nonetheless, cosmological constant model fits the current data

well.

•Our can directly test a variety of interesting models with minimal

assumptions and provide sharp nonparametric estimates for w.

•The Fisher basis need not be a good choice.


